Publication Cover
Research in Sports Medicine
An International Journal
Volume 32, 2024 - Issue 1
164
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The intraocular pressure lowering-effect of low-intensity aerobic exercise is greater in fitter individuals: a cluster analysis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 86-97 | Received 25 Feb 2022, Accepted 16 May 2022, Published online: 24 May 2022

References

  • Anderson, A. J. (2019). Exercise and glaucoma: Positive steps toward finding another modifiable risk factor to prevent vision loss. Ophthalmology, 126(7), 965–966. https://doi.org/10.1016/j.ophtha.2018.12.035
  • Bakke, E. F., Hisdal, J., & Semb, S. O. (2009). Intraocular pressure increases in parallel with systemic blood pressure during isometric exercise. Investigative Ophthalmology and Visual Science, 50(2), 760–764. https://doi.org/10.1167/iovs.08-2508
  • Boland, M., Ervin, A.-M., Friedman, D., Jampel, H., Hawkins, B., Vollenweider, D., Chelladurai, Y., Ward, D., Suarez-Cuervo, C., & Robinson, K. (2013). Comparative effectiveness of treatments for open-angle glaucoma: A systematic Review for the U.S. Preventive Services Task Force. Annals of Internal Medicine, 158(12), 271–279. https://doi.org/10.7326/0003-4819-158-4-201302190-00008
  • Cheung, C. Y., Ling Li, S., Chan, N., Chan, P. P., Wang, Y., Wong, M., Lai, I., & Tham, C. C. (2022). Intraocular pressure control predicts retinal nerve fiber layer thinning in primary angle closure disease: The CUPAL study. American Journal of Ophthalmology, 234, 205–214. In press. https://doi.org/10.1016/j.ajo.2021.08.004
  • De Moraes, C. G. V., Juthani, V. J., Liebmann, J. M., Teng, C. C., Tello, C., Susanna, R., & Ritch, R. (2011). Risk factors for visual field progression in treated glaucoma. Archives of Ophthalmology, 129(5), 562–568. https://doi.org/10.1001/archophthalmol.2011.72
  • Gale, J., Wells, A. P., & Wilson, G. (2009). Effects of exercise on ocular physiology and disease. Survey of Ophthalmology, 54(3), 349–355. https://doi.org/10.1016/j.survophthal.2009.02.005
  • García-Ramos, A., Torrejón, A., Morales-Artacho, A. J., Pérez-Castilla, A., & Jaric, S. (2018). Optimal resistive forces for maximizing the reliability of leg muscles’ capacities tested on a cycle ergometer. Journal of Applied Biomechanics, 34(1), 47–52. https://doi.org/10.1123/jab.2017-0056
  • Hamilton-Maxwell, K. E., & Feeney, L. (2012). Walking for a short distance at a brisk pace reduces intraocular pressure by a clinically significant amount. Journal of Glaucoma, 21(6), 421–425. https://doi.org/10.1097/IJG.0b013e31821826d0
  • Harbili, S. (2015). The effect of different recovery duration on repeated anaerobic performance in elite cyclists. Journal of Human Kinetics, 49(1), 171. https://doi.org/10.1515/hukin-2015-0119
  • Hecht, I., Achiron, A., Man, V., & Burgansky-Eliash, Z. (2017). Modifiable factors in the management of glaucoma: A systematic review of current evidence. Graefe’s Archive for Clinical and Experimental Ophthalmology, 255(4), 789–796. https://doi.org/10.1007/s00417-016-3518-4
  • Herbert, P., Sculthorpe, N., Baker, J. S., & Grace, F. M. (2015). Validation of a six second cycle test for the determination of peak power output. Research in Sports Medicine (Print), 23(2), 115–125. https://doi.org/10.1080/15438627.2015.1005294
  • Kenney, W. L., Wilmore, J., & Costill, D. (2015). Physiology of Sport and Exercise (6th Edition ed.). Human kinetics.
  • Kim, Y. W., & Park, K. H. (2019). Exogenous influences on intraocular pressure. British Journal of Ophthalmology, 103(9), 1209–1216. https://doi.org/10.1136/bjophthalmol-2018-313381
  • Lee, M. J., Wang, J., Friedman, D. S., Boland, M. V., De Moraes, C. G., & Ramulu, P. Y. (2019). Greater physical activity is associated with slower visual field loss in glaucoma. Ophthalmology, 126(7), 958–964. https://doi.org/10.1016/j.ophtha.2018.10.012
  • Leske, M., Heijl, A., Hussein, M., Bengtsson, B., Hyman, L., & Komaroff, E. (2003). Factors for glaucoma Progression and the effect of treatment: The early manifest glaucoma trial. Arch Ophthalmol, 121(1), 48–56. https://doi.org/10.1097/00132578-200310000-00007
  • Li, M., Wang, M., Guo, W., Wang, J., & Sun, X. (2011). The effect of caffeine on intraocular pressure: A systematic review and meta-analysis. Graefe’s Archive for Clinical and Experimental Ophthalmology, 249(3), 435–442. https://doi.org/10.1007/s00417-010-1455-1
  • Mansouri, K., Medeiros, F. A., & Weinreb, R. N. (2013). Intraocular pressure changes during sexual activity. Acta Ophthalmologica, 91(4), 324–325. https://doi.org/10.1111/aos.12023
  • Meier, N., Lee, D.-C., Siu, X., & Blair, S. (2018). Physical activity, cardiorespiratory fitness, and incident glaucoma. Med Sci Sports Exer, 50(11), 2253–2258. https://doi.org/10.1249/MSS.0000000000001692.Physical
  • Najmanova, E., Pluhacek, F., & Botek, M. (2016). Intraocular pressure response to moderate exercise during 30-min recovery. Optometry and Vision Science, 93(3), 281–285. https://doi.org/10.1097/OPX.0000000000000794
  • Natsis, K., Asouhidou, I., Nousios, G., Chatzibalis, T., Vlasis, K., & Karabatakis, V. (2009). Aerobic exercise and intraocular pressure in normotensive and glaucoma patients. BMC Ophthalmology, 9(1), 6. https://doi.org/10.1186/1471-2415-9-6
  • Ong, S. R., Crowston, J. G., Loprinzi, P. D., & Ramulu, P. Y. (2018). Physical activity, visual impairment, and eye disease. Eye, 32(8), 1296–1303. https://doi.org/10.1038/s41433-018-0081-8
  • Pakrou, N., Gray, T., Mills, R., Landers, J., & Craig, J. (2008). Clinical comparison of the Icare tonometer and Goldmann applanation tonometry. Journal of Glaucoma, 17(1), 43–47. https://doi.org/10.1097/IJG.0b013e318133fb32
  • Pan, X., Xu, K., Wang, X., Chen, G., Cheng, H., Liu, A. J., Hou, L. T., Zhong, L., Chen, J., & Liang, Y. (2020). Evening exercise is associated with lower odds of visual field progression in Chinese patients with primary open angle glaucoma. Eye and Vision, 7(1), 5–12. https://doi.org/10.1186/s40662-020-0175-9
  • Perez, C. I., Singh, K., & Lin, S. (2019). Relationship of lifestyle, exercise, and nutrition with glaucoma. Current Opinion in Ophthalmology, 30(2), 82–88. https://doi.org/10.1097/ICU.0000000000000553
  • Pérez-Castilla, A., García-Ramos, A., Redondo, B., Andrés, F. R., Jiménez, R., & Vera, J. (2020). Determinant factors of intraocular pressure responses to a maximal isometric handgrip test: Hand dominance, handgrip strength and sex. Current Eye Research, 46(1), 64–70. https://doi.org/10.1080/02713683.2020.1780265
  • Peveler, W., Pounders, J., & Bishop, P. (2007). Effects of saddle height on economy and anaerobic power in well-trained cyclists. Journal of Strength and Conditioning Research, 21(4), 1023–1027. https://doi.org/10.1519/JSC.0b013e3181d09e60
  • Piercy, K. L., Troiano, R. P., Ballard, R. M., Carlson, S. A., Fulton, J. E., Galuska, D. A., George, S. M., & Olson, R. D. (2018). The physical activity guidelines for Americans. JAMA, 320(19), 2020–2028. https://doi.org/10.1001/jama.2018.14854
  • Prata, T. S., De Moraes, C. G. V., Kanadani, F. N., Ritch, R., & Paranhos, A. (2010). Posture-induced intraocular pressure changes: Considerations regarding body position in glaucoma patients. Survey of Ophthalmology, 55(5), 445–453. https://doi.org/10.1016/j.survophthal.2009.12.002
  • Risner, D., Ehrlich, R., Kheradiya, N. S., Siesky, B., McCranor, L., & Harris, A. (2009). Effects of exercise on intraocular pressure and ocular blood flow: A review. Journal of Glaucoma, 18(6), 429–436. https://doi.org/10.1097/IJG.0b013e31818fa5f3
  • Rüfer, F., Schiller, J., Klettner, A., Lanzl, I., Roider, J., & Weisser, B. (2014). Comparison of the influence of aerobic and resistance exercise of the upper and lower limb on intraocular pressure. Acta Ophthalmologica, 92(3), 249–252. https://doi.org/10.1111/aos.12051
  • Tseng, V. L., Yu, F., & Coleman, A. L. (2020). Association between exercise intensity and glaucoma in the national health and nutrition examination survey. Ophthalmology. Glaucoma, 3(5), 393–402. https://doi.org/10.1016/j.ogla.2020.06.001
  • Vaghefi, E., Shon, C., Reading, S., Sutherland, T., Borges, V., Phillips, G., Niederer, R. L., & Danesh-Meyer, H. (2021). Intraocular pressure fluctuation during resistance exercise. BMJ Open Ophthalmology, 6(1), 1–8. https://doi.org/10.1136/bmjophth-2021-000723
  • Vera, J., Jiménez, R., García, J., & Cárdenas, D. (2017). Intraocular pressure is sensitive to cumulative and instantaneous mental workload. Applied Ergonomics, 60, 313–319. https://doi.org/10.1016/j.apergo.2016.12.011
  • Vera, J., Jiménez, R., Redondo, B., Cárdenas, D., De Moraes, C. G., & Garcia-Ramos, A. (2017). Intraocular pressure responses to maximal cycling sprints against different resistances: The influence of fitness level. Journal of Glaucoma, 26(10), 881–887. https://doi.org/10.1097/IJG.0000000000000749
  • Vera, J., Jiménez, R., Redondo, B., Cárdenas, D., & García-Ramos, A. (2018). Fitness level modulates intraocular pressure responses to strength exercises. Current Eye Research, 43(6), 740–746. https://doi.org/10.1080/02713683.2018.1431289
  • Vera, J., Jiménez, R., Redondo, B., Cárdenas, D., Bryon, R., García-Ramos, A., Vera, J., Jiménez, R., Redondo, B., & Cárdenas, D. (2019). Acute intraocular pressure responses to high- intensity interval-training protocols in men and women. Journal of Sports Sciences, 37(7), 803–809. https://doi.org/10.1080/02640414.2018.1527674
  • Vera, J., Jiménez, R., Redondo, B., Torrejón, A., De Moraes, C. G., & García-Ramos, A. (2019). Effect of the level of effort during resistance training on intraocular pressure. European Journal of Sport Science, 19(3), 394–401. https://doi.org/10.1080/17461391.2018.1505959
  • Vera, J., Jiménez, R., Redondo, B., Torrejón, A., Koulieris, G. A., de Moraes, C. G., & García-Ramos, A. (2019). Investigating the immediate and cumulative effects of isometric squat exercise for different weight loads on intraocular pressure: A pilot study. Sports Health, 11(3), 247–253. https://doi.org/10.1177/1941738119834985
  • Vera, J., Raimundo, J., García-Durán, B., Pérez-Castilla, A., Redondo, B., Delgado, G., Koulieris, G.-A., & García-Ramos, A. (2019). Acute intraocular pressure changes during isometric exercise and recovery: The influence of exercise type and intensity, and participant´s sex. Journal of Sports Sciences, 37(19), 2213–2219. https://doi.org/10.1080/02640414.2019.1626072
  • Vera, J., Redondo, B., Molina, R., Bermúdez, J., & Jiménez, R. (2019). Effects of caffeine on intraocular pressure are subject to tolerance: A comparative study between low and high caffeine consumers. Psychopharmacology, 236(2), 811–819. https://doi.org/10.1007/s00213-018-5114-2
  • Vera, J., Diaz-Piedra, C., Jiménez, R., Sanchez-Carrion, J. M., & Di Stasi, L. L. (2019). Intraocular pressure increases after complex simulated surgical procedures in residents: An experimental study. Surgical Endoscopy and Other Interventional Techniques, 33(1), 216–224. https://doi.org/10.1007/s00464-018-6297-7
  • Vera, J., Jiménez, R., Redondo, B., García-Ramos, A., & Cárdenas, D. (2020). Effect of a maximal treadmill test on intraocular pressure and ocular perfusion pressure: The mediating role of fitness level. European Journal of Ophthalmology, 30(3), 506–512. https://doi.org/10.1177/1120672119832840
  • Vera, J., Perez-Castilla, A., Redondo, B., De La Cruz, J. C., Jiménez, R., & García-Ramos, A. (2020). Influence of the breathing pattern during resistance training on intraocular pressure. European Journal of Sport Science, 20(2), 157–165. https://doi.org/10.1080/17461391.2019.1617354
  • Vera, J., Redondo, B., Bardón, A., Pérez-Castilla, A., García-Ramos, A., & Jiménez, R. (2020). Effects of caffeine consumption on intraocular pressure during low-intensity endurance exercise: A placebo-controlled, double-blind, balanced crossover study. Clinical and Experimental Ophthalmology, 48(5), 602–609. https://doi.org/10.1111/ceo.13755
  • Vera, J., Redondo, B., Koulieris, G. A., Torrejon, A., Jiménez, R., & Garcia-Ramos, A. (2020). Intraocular pressure responses to four different isometric exercises in men and women. Optometry and Vision Science : Official Publication of the American Academy of Optometry, 97(8), 648–653. https://doi.org/10.1097/OPX.0000000000001545
  • Vera, J., Redondo, B., Perez-Castilla, A., Koulieris, G. A., Jiménez, R., & Garcia-Ramos, A. (2021). The intraocular pressure response to lower-body and upper-body isometric exercises is affected by the breathing pattern. European Journal of Sport Science, 21(6), 879–886. https://doi.org/10.1080/17461391.2020.1790670
  • Vera, J., Redondo, B., Perez-Castilla, A., Koulieris, G. A., Jiménez, R., & Garcia-Ramos, A. (2021). The intraocular pressure response to lower-body and upper-body isometric exercises is affected by the breathing pattern. European Journal of Sport Science, 21(6), 879–886. https://doi.org/10.1080/17461391.2020.1790670
  • Vieira, G., Oliveira, H., de Andrade, D., Bottaro, M., & Ritch, R. (2006). Intraocular pressure variation during weight lifting. Archives of Ophthalmology, 124(9), 1251–1254. https://doi.org/10.1001/archopht.126.2.287-b
  • Weinreb, R. N., Aung, T., & Medeiros, F. A. (2014). The pathophysiology and treatment of glaucoma. JAMA, 311(18), 1901–1911. https://doi.org/10.1001/jama.2014.3192
  • Yokota, S., Takihara, Y., Kimura, K., Takamura, Y., & Inatani, M. (2016). The relationship between self-reported habitual exercise and visual field defect progression: A retrospective cohort study. BMC Ophthalmology, 16(1), 1–4. https://doi.org/10.1186/s12886-016-0326-x
  • Yuan, Y., Lin, T., Gao, K., Zhou, R., Radke, N., Lam, D., & Zhang, X. (2021). Aerobic exercise reduces intraocular pressure and expands Schlemm’s canal dimensions in healthy and primary open-angle glaucoma eyes. Indian Journal of Ophthalmology, 69(5), 1127–1134. https://doi.org/10.4103/ijo.IJO
  • Zhu, M. M., Lai, J. S. M., Choy, B. N. K., Shum, J. W. H., Lo, A. C. Y., Ng, A. L. K., Chan, J. C. H., & So, K. F. (2018). Physical exercise and glaucoma: A review on the roles of physical exercise on intraocular pressure control, ocular blood flow regulation, neuroprotection and glaucoma-related mental health. Acta Ophthalmologica, 96(6), 676–691. https://doi.org/10.1111/aos.13661

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.