325
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Microstructural Study, Tensile Properties, and Scanning Electron Microscopy Fractography Failure Analysis of Various Agricultural Residue Fibers

, , , , &

REFERENCES

  • Abdul Khalil, H. P. S., M. Siti Alwani, R. Ridzuan, H. Kamarudin, and H. Khairul. 2008. Chemical composition, morphological characteristics, and cell wall structure of Malaysian oil palm fibers. Polymer-Plastics Technology and Engineering 47(3): 273–280.
  • Abraham, E., B. Deepa, L. Pothan, M. Jacob, S. Thomas, U. Cvelbar. 2011. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydrate Polymers 86(4): 1468–1475.
  • Aslan, M., G. Chinga-Carrasco, B. F. Sørensen, and B. Madsen. 2011. Strength variability of single flax fibres. Journal of Materials Science 46(19): 6344–6354.
  • Baley, C. 2002. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Composites Part A: Applied Science and Manufacturing 33: 939–948.
  • Banik, S., D. Nag, and S. Debnath. 2011. Utilization of pineapple leaf agro-waste for extraction of fibre and the residual biomass for vermicomposting. Indian Journal of Fibre and Textile Research 36(2): 172.
  • Barbosa Jr, V., E. C. Ramires, I. A. T. Razera, and E.Frollini. 2010. Biobased composites from tannin–phenolic polymers reinforced with coir fibers. Industrial Crops and Products 32(3): 305–312.
  • Belaadi, A., A. Bezazi, M. Bourchak, and F. Scarpa. 2013. Tensile static and fatigue behaviour of sisal fibres. Materials & Design 46: 76–83.
  • Bilba, K., Arsene, M.-A., and Ouensanga, A. 2007. Study of banana and coconut fibers. Botanical composition, thermal degradation and textural observation. Bioresource Technology 98, 58–68.
  • Bledzki, A., and J. Gassan. 1999. Composites reinforced with cellulose based fibres. Progress in Polymer Science 24: 221–274.
  • Bourmaud, A., C. Morvan, and C. Baley. 2010. Importance of fiber preparation to optimize the surface and mechanical properties of unitary flax fiber. Industrial Crops and Products 32(3): 662–667.
  • Buana, M. S. A. S., P. Pasbaskhsh, K. L. Goh, F. Bateni, and M. R. H. M Haris. 2013. Elasticity, microstructure and thermal stability of foliage and fruit fibres from four tropical crops. Fibers and Polymers 14: 623–629.
  • Crocker, J. 2008. Natural materials innovative natural composites, Materials Technology 2: 174–178.
  • d’Almeida, J., R. Aquino, and S. Monteiro. 2006. Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers. Composites Part A: Applied Science and Manufacturing 37: 1473–1479.
  • De Rosa, I. M., J. M. Kenny, D. Puglia, C. Santulli and F. Sarasini. 2010. Tensile behavior of New Zealand flax (Phormium tenax) fibers. Journal of Reinforced Plastics and Composites 29(3): 3450–3454.
  • Gore, A. 2006. An inconvenient truth: The planetary emergency of global warming and what we can do about it. Emmaus, PA: Rodale Books.
  • Gorshkova, T., N. Brutch, B. Chabbert, M. Deyholos, T. Hayashi, S. Lev-Yadun, E. J. Mellerowicz, C. Morvan, G. Neutelings, and G. Pilate. 2012. Plant fiber formation: state of the art, recent and expected progress, and open questions. Critical Reviews in Plant Sciences 31(3): 201–228.
  • He, J. Y., Z. K. Zhuang, T. Huang, Q. F. Li, M. F. Li, G. R. Deng, W. W. Lian, Z. Q. Ou, S. M. Qin, and J. Zhang. 2013. A Study on the Structure and Properties of Pineapple Leaf Viscose Fiber. Advanced Materials Research 627: 3–14.
  • Hemmasi, A. H., A. Samariha, A. Tabei, A. Nemati, and A. Khakifirooz. 2011. Study of morphological and chemical composition of fibers from Iranian sugarcane bagasse. Am-Eurasian Journal of Agricultural and Environmental Science, 11(4): 478–481.
  • Jayaprabha, J., M. Brahmakumar, and V. Manilal. 2011. Banana pseudostem characterization and its fiber property evaluation on physical and bioextraction. Journal of Natural Fibers 8(3): 149–160.
  • Jústiz-Smith, N. G., G. Virgo, and V. E. Buchanan.2008. Potential of Jamaican banana, coconut coir and bagasse fibres as composite materials. Materials Characterization 59(9): 1273–1278.
  • Kabir, M. M., Wang, H., Aravinthan, T., Cordona, F., and Lau, K.-T. (2011). Effect of natural fibre surface on composite properties: A review. 1st International Postgraduate Conference on Engineering, Designing and Developing the Built Environment for Sustainability Wellbeing, Brisbane, Australia.
  • Kulkarni, A., K. Satyanarayana, K. Sukumaran, and P. Rohatgi. 1981. Mechanical behaviour of coir fibres under tensile load. Journal of Materials Science 16(4): 905–914.
  • Lavadia, D. N., and T. H. Fronk. 2013. Mechanical properties of bio-fibres for composite materials. Society for the Advancement of Material and Processing Engineering Journal 49: 7–12.
  • Mathew, A. P., K. Oksman, and M. Sain. 2006. The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. Journal of Applied Polymer Science 101: 300–310.
  • Mishra, S., A. K. Mohanty, L. T. Drzal, M. Misra, and G. A. Hinrichsen. 2004. A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromolecular Materials and Engineering 289(11): 955–974.
  • Mohamed, A., S. Sapuan, M. Shahjahan, and A. Khalina. 2010. Effects of simple abrasive combing and pretreatments on the properties of pineapple leaf fibers (palf) and palf-vinyl ester composite adhesion. Polymer-Plastics Technology and Engineering 49(10): 972–978.
  • Monteiro, S. N., F. P. D. Lopes, A. P. Barbosa, A. B. Bevitori, I. L. A. Da Silva, and L. L. Da Costa. 2011. Natural lignocellulosic fibers as engineering materials-an overview. Metallurgical and Materials Transactions A 42(10): 2963–2974.
  • Muensri, P., T. Kunanopparat, P. Menut, and S. Siriwattanayotin. 2011. Effect of lignin removal on the properties of coconut coir fiber/wheat gluten biocomposite. Composites Part A: Applied Science and Manufacturing 42(2): 173–179.
  • Mukhopadhyay, S., R. Fangueiro, and V. Shivankar. 2009. Variability of tensile properties of fibers from pseudostem of banana plant. Textile Research Journal 79(5): 387–393.
  • Munawar, S. S., K. Umemura, and S. Kawai. 2007. Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. Journal of Wood Science 53(2): 108–113.
  • Mwaikambo, L., and M. Ansell. 2006. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials II: Sisal fibres. Journal of Materials Science 41(8): 2497–2508.
  • Mylsamy, K., and I. Rajendran. 2010. Investigation on physio-chemical and mechanical properties of raw and alkali-treated Agave americana fiber. Journal of Reinforced Plastics and Composites 29(19): 2925–2935.
  • Nitta, Y., K. Goda, J. Noda, and W. I. Lee. 2013. Cross-sectional area evaluation and tensile properties of alkali-treated kenaf fibres. Composites Part A: Applied Science and Manufacturing 49: 132–138.
  • Ochi, S. 2008. Mechanical properties of kenaf fibers and kenaf/PLA composites. Mechanics of Materials 40: 446–452.
  • Osorio, L., E. Trujillo, A. W. Van Vuure, F. Lens, J. Ivens, and I. Verpoest. 2010. The relationship between the bamboo fibre microstructure and mechanical properties. Proceedings 14th European conference on composite materials, 7–10 June, 2010, Budapest, Hungary.
  • Priadi, D., R. H. Lumingkewas, H. Purnomo, G. Ausias, T. Lecompte, and A. Perrot. 2013. Tensile characteristics of coconut fibers reinforced mortar composites. Advanced Materials Research 651: 269–273.
  • Reddy, N., and Y. Yang. 2005. Biofibers from agricultural byproducts for industrial applications. TRENDS in Biotechnology 23(1): 22–27.
  • Rowell, R. M., J. S. Han, and J. S. Rowell. 2000. Characterization and factors effecting fiber properties. Natural Polymers and Agrofibers Bases Composites 115–134.
  • Satyanarayana, K. G., F. Wypych, M. A. Woehl, L. P. Ramos, and R. Marangoni. 2011. Nanocomposites Based on Starch and Fibers of Natural Origin. In Handbook of Bioplastics and Biocomposites Engineering Applications, ed. S. Pilla, 471–509, NJ: John Wiley & Sons, Inc.
  • Silva, F. D. A., and N. Chawla. 2008. Tensile behavior of high performance natural (sisal) fibers. Composites Science and Technology 68(15&16): 3438–3443.
  • Silva, G. G., D. De Souza, J. Machado, and D. Hourston. 2000. Mechanical and thermal characterization of native Brazilian coir fiber. Journal of Applied Polymer Science 76(7): 1197–1206.
  • Thomas, S., S. Paul, L. Pothan, and B. Deepa. 2011. Natural fibres: structure, properties and applications. In S. Kalia, B.S. Kaith and I. Kaur. Cellulose Fibers: Bio-and Nano-Polymer Composites ( pp. 3–42). New York: Springer Berlin Heidelberg.
  • Tomczak, F., T. H. D. Sydenstricker, and K. G. Satyanarayana. 2007. Studies on lignocellulosic fibers of Brazil. Part II: Morphology and properties of Brazilian coconut fibers. Composites Part A: Applied Science and Manufacturing 38: 1710–1721.
  • Van Dam, J. E. G., and T. A. Gorshkova. 2003. Plant Growth and Development: Plant Fiber Formation. In Encyclopedia of applied plant sciences, eds. D. Thomas, J. Murphy, and B. G. Murray. Academic Press.
  • Vincent, J.F. 2000. A unified nomenclature for plant fibres for industrial use. Applied Composite Materials 7(5&6): 269–271.
  • Wambua, P., J. Ivens, and I. Verpoest. 2003. Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology 63: 1259–1264.
  • Wan Nadirah, W., M. Jawaid, A. A. Al Masri, H. P. S. A. Khalil, S. Suhaily, and A. Mohamed. 2012. Cell wall morphology, chemical and thermal analysis of cultivated pineapple leaf fibres for industrial applications. Journal of Polymers and the Environment 12: 404–411.
  • Xia, Z., J. Yu, L. Cheng, L. Liu, and W. Wang. 2009. Study on the breaking strength of jute fibres using modified Weibull distribution. Composites Part A: Applied Science and Manufacturing 40(1): 54–59.
  • Zafeiropoulos, N. E., and C. A. Baillie. 2007. A study of the effect of surface treatments on the tensile strength of flax fibres: Part II. Application of Weibull statistics. Composites Part A: Applied Science and Manufacturing 38(2): 629–638.
  • Zhang, Y., X. Wang, N. Pan, and R. Postle. 2002. Weibull analysis of the tensile behavior of fibers with geometrical irregularities. Journal of Materials Science 32(7): 1401–1406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.