197
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Improvement the Conductivity and Flame Retardant Properties of Carboxylated Single-Walled Carbon Nanotube/Cotton Fabrics Using Citric Acid and Sodium Hypophosphite

&

References

  • Abd EL-Hady, M. M., A. Farouk, and S. Sharaf. 2013. Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acids. Carbohydrate Polymers 92: 400–406. doi:10.1016/j.carbpol.2012.08.085.
  • Bajaj, P. 2002. Finishing of textile materials. Journal of Applied Polymer Science 83: 631–659. doi:10.1002/(ISSN)1097-4628.
  • Bellayer, S., J. W. Gilman, S. S. Rahatekar, S. Bourbigot, X. Flambard, L. M. Hanssen, H. Guo, and S. Kumar. 2007. Characterization of SWCNT and PAN/SWCNT films. Carbon 45: 2417–2423. doi:10.1016/j.carbon.2007.06.057.
  • Blanchard, E. J., E. E. Graves, and P. A. Salame. 2000. Flame resistant cotton/polyester carpet materials. Journal of Fire Science 18 (2): 151–164. doi:10.1177/073490410001800205.
  • Bradford, P. D., and A. E. Bogdanovich. 2008. Electrical conductivity study of carbon Nanotube yarns, 3-D hybrid braids and their composites. Journal of Composite Materials 42 (15): 1533–1539. doi:10.1177/0021998308092206.
  • Brown, P. J., and K. Stevens. 2007. Nanofibers and Nanotechnology in textiles, 183. Cambridge, UK: Woodhead Publishing.
  • Byl, O., J. Liu, and J. T. Yates. 2006. Characterization of single wall carbon nanotubes by nonane preadsorption. Carbon 44: 2039–2044. doi:10.1016/j.carbon.2006.01.014.
  • Chen, C. C., and C. C. Wang. 2006. Crosslinking of cotton cellulose with succinic acid in the presence of titanium dioxide nano-catalyst under UV irradiation. Journal of Sol-Gel Science Technology 40: 31–38. doi:10.1007/s10971-006-8319-5.
  • Chen, D. Q., Y. Z. Wang, X. P. Hu, D. Y. Wang, M. H. Qu, and B. Yang. 2005. Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene terephtalate) fabrics. Polymer Degradation and Stability Journal 88: 349–356. doi:10.1016/j.polymdegradstab.2004.11.010.
  • Coleman, J. N., U. Khan, W. J. Blau, and Y. K. Gun’ko. 2006. Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44: 1624–1652. doi:10.1016/j.carbon.2006.02.038.
  • Devaux, E., V. Koncar, B. Kim, C. Campagne, C. Roux, M. Rochery, and D. Saihi. 2007. Processing and characterization of conductive yarns by coating or bulk treatment for smart textile applications. Transactions of the Institute of Measurement and Control 29 (3–4): 355–376. doi:10.1177/0142331207081726.
  • Grum, R. D., and C. J. Bartleson. 1980. Optical radiation measurement, 127. New York, NY: Academic Press.
  • Harrison, B. S., and A. Atala. 2007. Carbon nanotube applications for tissue engineering. Biomaterials 28: 344–353. doi:10.1016/j.biomaterials.2006.07.044.
  • Hong, K. H., and G. Sun. 2008. Antimicrobial and chemical detoxifying functions of cotton fabrics containing different benzophenone derivatives. Carbohydrate Polymer 71: 598–605. doi:10.1016/j.carbpol.2007.07.004.
  • Karthik, T., R. Rathinamoorthy, and R. Murugan. 2011. Enhancement of wrinkle recovery angle of cotton fabric using citric acid cross-linking agent with nano-TiO2 as a co-catalyst. Journal of Industrial Textiles 42 (2): 99–117. doi:10.1177/1528083711427481.
  • Lessan, F., M. Montazer, and M. B. Moghadam. 2011. A novel durable flame-retardant cotton fabric using hypophosphite, nano TiO2 and maleic acid. Thermochimica Acta 520: 48–54. doi:10.1016/j.tca.2011.03.012.
  • Motaghi, Z., and S. Shahidi. 2014. FT-Raman spectroscopy and electrical conductivity on cotton fabrics via single-walled and carboxylated single-walled carbon Nanotube treatment. Journal of Fashion Technology and Textile Engineering 2 (3): 1–6.
  • Motaghi, Z., and S. Shahidi. 2015. Effect of single wall and carboxylated single wall carbon Nanotube on conduction properties of wool fabrics. Journal of Natural Fibers 12: 388–398. doi:10.1080/15440478.2014.945225.
  • Oh, J., Y. W. Chang, H. J. Kim, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K.-H. Yoo. 2010. Carbon Nanotube-based dual-mode biosensor for electrical and surface plasmon resonance measurements. Nano Letter 10: 2755–2760. doi:10.1021/nl100125a.
  • Panhuis, M., J. Wu, S. A. Ashraf, and G. G. Wallace. 2007. Conducting textiles from single-walled carbon Nanotubes. Synthetic Materials 157: 358–362. doi:10.1016/j.synthmet.2007.04.010.
  • Polizu, S., M. Maugey, S. Poulin, P. Poulin, and L. Yahia. 2006. Nanoscale surface of carbon nanotube fibers for medical applications: Structure and chemistry revealed by TOF-SIMS analysis. Applied Surface Science 252: 6750–6753. doi:10.1016/j.apsusc.2006.02.262.
  • Rearick, W. A., M. L. Wallace, W. B. Martin, and P. J. Wakelyn. 2002. Flammability considerations for raised surface apparel. AATCC Review 2 (2): 12–15.
  • Welch, C. M., and J. G. Peters. 2002. Durable press finishes using citric and tartaric acid with methyl hydrogen silicone. Textile Chemistry and Color & American Dyes Report 3: 55–60.
  • Xu, J., and T. S. Fisher. 2006. Enhancement of thermal interface materials with carbon nanotube arrays. International Journal of Heat Mass Transfer 49: 658–666.
  • Yun, L., and Q. Chales. 1999. Fabric yellowing caused by citric acid as a crosslinking agent for cotton. Textile Research Journal 69 (9): 685–690. doi:10.1177/004051759906900909.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.