237
Views
6
CrossRef citations to date
0
Altmetric
Articles

The underwater superoleophobic natural pomelo peel fibers powders coatings for efficiently oil/water separation

, , &

References

  • Abdullah, M. A., A. U. Rahmah, and Z. Man. 2010. Physicochemical and sorption characteristics of Malaysian Ceiba pentandra (L.) Gaertn. as a natural oil sorbent. Journal of Hazardous Materials 177:683–91. doi:10.1016/j.jhazmat.2009.12.085.
  • Al-Shamrani, A. A., A. James, and H. Xiao. 2002. Destabilisation of oil–Water emulsions and separation by dissolved air flotation. Water Research 36:1503–12. doi:10.1016/S0043-1354(01)00347-5.
  • Bhattacharya, S., H. Heidarsson, G. S. Sukhatme, and V. Kumar. 2011. Cooperative control of autonomous surface vehicles for oil skimming and cleanup. ieee international conference on robotics and automation (icra), 2374–79.
  • Cao, S., T. Dong, G. Xu, and F. M. Wang. 2017. Oil spill cleanup by hydrophobic natural fibers. Journal of Natural Fibers 14:1–9. doi:10.1080/15440478.2016.1277820.
  • Chen, P. C., and Z. K. Xu. 2013. Mineral-coated polymer membranes with superhydrophilicity and underwater superoleophobicity for effective oil/water separation. Scientific reports 3.
  • Chen, Y.,. H., Y. Liu, V. S. J. Craig, C. Wang, L. H. Li, and Y. Chen. 2015. Superhydrophobic and superoleophilic porous boron nitride nanosheet/polyvinylidene fluoride composite material for oil-polluted water cleanup. Advanced Materials Interfaces 2:1.
  • Chu, Z., Y. Feng, and S. Seeger. 2014. Oil/water separation with selective superantiwetting/superwetting surface materials. Angewandte Chemie-International Edition 54:2328–38. doi:10.1002/anie.201405785.
  • Du, C., J. Wang, Z. Chen, and D. Chen. 2014. Durable superhydrophobic and superoleophilic filter paper for oil–Water separation prepared by a colloidal deposition method. Applied Surface Science 313:304–10. doi:10.1016/j.apsusc.2014.05.207.
  • Gao, H.,. S., X. Ding, D. Wang, J. Jiang, J. Jin, and L. Jiang. 2015. Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions. Acs Nano 9:4835–42. doi:10.1021/nn5062854.
  • Hameed, B. H., D. K. Mahmoud, and A. L. Ahmad. 2008. Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. Colloids and Surfaces A: Physicochemical and Engineering Aspects 316:78–84. doi:10.1016/j.colsurfa.2007.08.033.
  • Jung, Y. C., and B. Bhushan. 2009. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity. Langmuir: the ACS Journal of Surfaces and Colloids 25:14165–73. doi:10.1021/la901906h.
  • Li, H.,. H., L. Wang, Y. Qiao, C. Tang, C. Jung, Y. Yoon, S. Li, and M. Yu. 2015a. Ultrafiltration membranes with structure‐optimized graphene‐oxide coatings for antifouling oil/water separation. Advanced materials interfaces 2.
  • Li, J., L. Yan, H. Li, J. Li, F. Zha, and Z. Q. Lei. 2015b. A facile one-step spray-coating process for the fabrication of superhydrophobic attapulgite coated mesh used in oil/water separation. Rsc Advances 5:53802–08. doi:10.1039/C5RA08478D.
  • Lin, L., M. Liu, L. Chen, P. Chen, J. Ma, D. Han, and L. Jiang. 2010. Bio-inspired hierarchical macromolecule-nanoclay hydrogels for robust underwater superoleophobicity. Advanced Materials 22:4826–30. doi:10.1002/adma.201002192.
  • Liu, J., P. Li, L. Chen, Y. Feng, W. He, X. Yan, and X. Lü. 2016. Superhydrophilic and underwater superoleophobic modified chitosan-coated mesh for oil/water separation. Surface & Coatings Technology 307:171–76. doi:10.1016/j.surfcoat.2016.08.052.
  • Luo, Z. Y., S. S. Lyu, Y. Q. Wang, and D. C. Mo. 2017. Fluorine-induced superhydrophilic ti foam with surface nanocavities for effective oil-in-water emulsion separation. Industrial & Engineering Chemistry Research 56:699–707. doi:10.1021/acs.iecr.6b04059.
  • Ma, X., L. Hao, J. Ma, P. Wang, X. Xu, and G. Jing. 2013. A facile approach for fabrication of underwater superoleophobic alloy. Applied Physics A 113:693–702. doi:10.1007/s00339-013-7701-8.
  • Mccloskey, B. D., H. Ju, and B. D. Freeman. 2010. Composite membranes based on a selective chitosan−poly(ethylene glycol) hybrid layer: Synthesis, characterization, and performance in oil−water purification. Industrial & Engineering Chemistry Research 49:366–73. doi:10.1021/ie901197u.
  • Obaid, M., G. M. K. Tolba, M. Motlak, O. A. Fadali, K. A. Khalil, A. A. Almajid, B. Kim, and N. A. M. Barakat. 2015. Effective polysulfone-amorphous SiO2 NPs electrospun nanofiber membrane for high flux oil/water separation. Chemical Engineering Journal 279:631–38. doi:10.1016/j.cej.2015.05.028.
  • Peterson, C. H., S. D. Rice, J. W. Short, D. Esler, J. L. Bodkin, B. E. Ballachey, and D. B. Irons. 2003. Long-term ecosystem response to the exxon valdez oil spill. Science 302:2082–86. doi:10.1126/science.1084282.
  • Sawai, Y., S. Nishimoto, Y. Kameshima, E. Fujii, and M. Miyake. 2013. Photoinduced underwater superoleophobicity of TiO2 thin films. Langmuir: the ACS Journal of Surfaces and Colloids 29:6784–89. doi:10.1021/la401382g.
  • Shannon, M. A., P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas, and A. M. Mayes. 2008. Science and technology for water purification in the coming decades. Nature 452:301–10. doi:10.1038/nature06599.
  • Tao, Y., J. Meng, T. Hao, Z. Wang, and Y. Zhang. 2015. A scalable method toward superhydrophilic and underwater superoleophobic PVDF membranes for effective oil/water emulsion separation. ACS Applied Materials & Interfaces 7:14896–904. doi:10.1021/acsami.5b03625.
  • Wenzel, R. N. 1936. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry 28:988–94. doi:10.1021/ie50320a024.
  • Wu, J., J. Chen, J. Xia, and W. Lei. 2013. A brief review on bioinspired znO superhydrophobic surfaces: Theory, synthesis, and applications. Advances in materials science & engineering: 1–10.
  • Xia, B., H. Liu, Y. Fan, W. Zhu, and C. Geng. 2016. Preparation of robust CuO/TiO2 superamphiphobic steel surface through chemical deposition and sol-gel methods. Advanced Engineering Materials 19:1600572. doi:10.1002/adem.201600572.
  • Xue, Z., Y. Cao, N. Liu, L. Feng, and L. Jiang. 2014. Special wettable materials for oil/water separation. Journal of Materials Chemistry A 2:2445–60. doi:10.1039/C3TA13397D.
  • Xue, Z., S. Wang, L. Lin, L. Chen, M. Liu, L. Feng, and L. Jiang. 2011. A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Advanced Materials 23:4270–73. doi:10.1002/adma.201102616.
  • Xue, Z. X., and L. Jiang. 2012. bioinspired underwater superoleophobic surfaces. Acta Polymerica Sinica 10:1091–101.
  • Zhang, G., M. Li, B. Zhang, Y. Huang, and Z. Su. 2014. A switchable mesh for on-demand oil–Water separation. Journal of Materials Chemistry A 2:15284–87. doi:10.1039/C4TA03034F.
  • Zhu, Q., and Q. Pan. 2014. Mussel-inspired direct immobilization of nanoparticles and application for oil-water separation. ACS Nano 8:1402–09. doi:10.1021/nn4052277.
  • Zou, J., X. Liu, W. Chai, X. Zhang, B. Li, Y. Wang, and Y. Ma. 2014. Sorption of oil from simulated seawater by fatty acid-modified pomelo peel. Desalination & Water Treatment 56:939–46. doi:10.1080/19443994.2014.941302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.