100
Views
2
CrossRef citations to date
0
Altmetric
Short Communications

Applicability of forcibly spinning technology to produce a finer silk filament

&

References

  • Akai, H., K. Kimura, M. Kiuchi, and A. Shibukawa. 1984. Effects of anti-juvenoid treatment on cocoon and cocoon filaments in Bombyx mori. Journal Seric Sciences Japan 53:545–46.
  • An, B., M. B. Hinman, G. P. Holland, Y. L. Yarger, and R. V. Lewis. 2011. Inducing beta-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching. Biomacromol 12:2375–81. doi:10.1021/bm200463e.
  • Aonuma, S., K. Shindo, and S. Ihara. 1962. Study on the bulkiness of raw silk. Part 2: Influence of the rate of sericin content and the arrangement of cocoon filaments constituting raw silk. Sen’i Kikai Gakkaishi 15:321–26.
  • Bogush, V. G., O. S. Sokolova, L. I. Davydova, D. V. Klinov, K. V. Sdoruk, N. G. Esipova, T. V. Neretina, I. A. Orchansky, V. Y. Makeev, V. G. Tumanyan, K. V. Shaitan, V. G. Debabov, and M. P. Kirpichnikov. 2009. A novel model system for design of biomaterials based on recombinant analogs of spider silk proteins. Journal Neuroimmune Pharmacology 4:17–27. doi:10.1007/s11481-008-9129-z.
  • Brooks, A. E., S. M. Stricker, S. B. Joshi, T. J. Kamerzell, C. R. Middaugh, and R. V. Lewis. 2008. Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2. Biomacromol 9:1506–10. doi:10.1021/bm701124p.
  • Calder, W. A. 1996. In: Size, function, and life history, 25–161. New York: Dover Pub., Inc.
  • Elices, M., G. V. Guinea, G. R. Plaza, C. Karatzas, C. Riekel, F. A. Rueda, R. Daza, and J. P. Rigueiro. 2011. Bioinspired fibers follow the track of natural spider silk. Macromol 44:1166–76. doi:10.1021/ma102291m.
  • Griffith, A. A. 1921. The phenomena of rupture and flow in solids. Phil Transactions R Social Lond A221:163–98. doi:10.1098/rsta.1921.0006.
  • Inoue, H. 2013. Several characteristic silkworm races. Silk Report 30:19–22.
  • Ishikawa, H., M. Nagura, T. Ui, and M. Tsukada. 1989. Molecular orientation and mechanophysical properties of cocoon filament. Journal Seric Sciences Japan 58:119–23.
  • Kamiishi, Y., and J. Machida. 1998. Characteristics of trimolter “Gunma×200” and “Seiki×two-one” silk fibers. Journal Silk Sciences Technical Japan 7:27–32.
  • Kawahara, Y., T. Hananoushi, and H. Minami. 2017. Textile properties for the cocoons fabricated by non-genetically modified Bombyx mori silkworms. Journal of Fiber Science & Technology 73:328–36. doi:10.2115/fiberst.2017-0041.
  • Keerl, D., and T. Scheibel. 2012. Characterization of natural and biomimetic spider silk fibers. Bioinspired Biomim. Nanobiomater 1:83–94.
  • Kinloch, A. J., and R. J. Young. 1983. In: Fracture behavior of polymers. London and New York: Applied Science Pub.
  • Md.M.R., K., H. Morikawa, Y. Gotoh, M. Miura, Z. Ming, Y. Sato, and M. Iwasa. 2008. Structural characteristics and properties of Bombyx mori silk fiber obtained by different artificial forcibly silking speeds. International Journal of Biological Macromolecules 42:264–70. doi:10.1016/j.ijbiomac.2007.12.001.
  • Miyajima, T., T. Yamamoto, K. Mase, T. Iizuka, M. Nozaki, and M. Kiuchi. 2001. Induction of trimolting larvae by the imidazole compound, triflumizole, in the silkworm races with a thin cocoon filament, Hakugin and Honobono, and the resulted cocoon characters. Journal Seric Sciences Japan 70:37–42.
  • Mortimer, B., C. Holland, and F. Vollrath. 2013. Forced reeling of Bombyx mori silk: Separating behavior and processing conditions. Biomacromol 14:3653–59. doi:10.1021/bm401013k.
  • Nakajima, K., H. Aizawa, M. Iwadare, H. Teramoto, and C. Takabayashi. 2001. Journal Silk Sciences Technical Japan 10:S17–S18.
  • Nakajima, Y., and T. Hananouchi. 2008. Study on ancient silk of trimolter of kan. Journal Silk Sciences Technical Japan 17:96–97.
  • Rigueiro, J. P., M. Elices, J. Llorca, and C. Viney. 2001. Tensile properties of silkworm silk obtained by forced silking. Journal of Applied Polymer Sciences 82:1928–35. doi:10.1002/app.v82:8.
  • Shao, Z., and F. Vollrath. 2002. Surprising strength of silkworm silk. Nature 418:741. doi:10.1038/418741a.
  • Shirota, T., and T. Aso. 2008. Genetic analyses and breeding strategy for silkworm races of different cocoon filament size. Sanshi-Konchu Biotec 77:153–58.
  • Takabayashi, C., I. Izawa, E. Miyazaki, K. Nakamura, K. Nakajima, and H. Teramoto. 2002. Characteristics of the silk thread and thin fabrics made of super fine filaments of cocoons by “Hakugin” silkworms treated to tri-molter. Journal Silk Sciences Technical Japan 11:41–48.
  • Tanaka, K. 2000. In: Ueda city museum, Ed. Yosan, and Seishi., 26–27. Ueda: Ueda city museum.
  • Termonia, Y., P. Meakin, and P. Smith. 1985. Theoretical study of the influence of the molecular weight on the maximum tensile strength of polymer fibers. Macromol 18:2246–52. doi:10.1021/ma00153a032.
  • Termonia, Y., and P. Smith. 1986. Theoretical study of the ultimate mechanical properties of poly(p-phenylene-terephthalamide) fibres. Polymer 27:1845–49. doi:10.1016/0032-3861(86)90170-9.
  • Teule, F., B. Addison, A. R. Cooper, J. Ayon, R. W. Henning, C. J. Benmore, G. P. Holland, J. L. Yarger, and R. V. Lewis. 2011. Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers. Biopolym 97:418–31. doi:10.1002/bip.21724.
  • Teule, F., W. A. Furin, A. R. Cooper, J. R. Duncan, and R. V. Lewis. 2007. Modifications of spider silk sequences in an attempt to control the mechanical properties of the synthetic fibers. Journal Materials Sciences 42:8974–85. doi:10.1007/s10853-007-1642-6.
  • Teule, F., Y.-G. Miao, B.-H. Sohn, Y.-S. Kim, J. J. Hull, M. J. Fraser, R. V. Lewis, and D. L. Jarvis. 2012. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Pnas 109:923–28. doi:10.1073/pnas.1109420109.
  • Toyama, K. 1906. Studies on the hybridology of insects. I. On some silkworm crosses, with special reference to Mendel’s law of heredity. Journal College Agr Imp University Tokyo 7:259–393.
  • Wohlrab, S., C. Thamm, and T. Scheibel. 2014. The power of recombinant spider silk proteins. In Biotechnology of silk, Eds. T. Asakura, and T. Miller, 179–201. New York: Springer.
  • Xia, X. X., C. S. Ki, Y. H. Park, D. L. Kaplan, and S. Y. Lee. 2010. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Pnas 107:14059–63. doi:10.1073/pnas.1003366107.
  • Yamamoto, T., M. Enokijima, I. Kamijyou, M. Fukasawa, M. Maruyama, K. Nakayama, and Y. Mimura. 1988. Breeding of the silkworm races having characteristics in size of cocoon filament. Bulletin Sericultural Experiments Station 134:81–95.
  • Yamamoto, T., K. Mase, K. Nagasaka, E. Okada, T. Itsubo, T. Miyajima, M. Enokijima, T. Kumai, and S. Izumi. 1999. Breeding of the silkworm race, Hakugin, with superthin cocoon filament. Journal Seric Sciences Japan 68:125–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.