299
Views
19
CrossRef citations to date
0
Altmetric
Articles

Impact behavior of sandwich structures made of flax/epoxy face sheets and agglomerated cork

, , , , ORCID Icon, , & show all

References

  • Abrate, S. 1997. Localized impact on sandwich structures with laminated facings. Applied Mechanics Reviews 50(2):69. doi:10.1115/1.3101689.
  • Abrate, S. 2005. Impact on composite structures. New York, NY: Cambridge University Press.
  • Akampumuza, O., P. M. Wambua, A. Ahmed, L. Wei, and X. Qin. 2016 February. Review of the applications of biocomposites in the automotive industry. Polymer Composites n/a-n/a. doi:10.1002/pc.23847.
  • Alcântara, I., F. Teixeira-Dias, and M. Paulino. 2013. Cork composites for the absorption of impact energy. Composite Structures 95:16–27. doi:10.1016/j.compstruct.2012.07.015.
  • Barbosa, A. Q., L. F. M. Da Silva, J. Abenojar, M. Figueiredo, and A. Öchsner. 2017. Toughness of a brittle epoxy resin reinforced with micro cork particles: Effect of size, amount and surface treatment. Composites Part B: Engineering 114 (April). Elsevier: 299–310. doi:10.1016/J.COMPOSITESB.2016.10.072.
  • Buitrago, B. L., S. K. García-Castillo, and E. Barbero. 2013. Influence of shear plugging in the energy absorbed by thin carbon-fibre laminates subjected to high-velocity impacts. Composites Part B: Engineering 49:86–92. doi:10.1016/j.compositesb.2013.01.005.
  • Castro, O., J. M. Silva, T. Devezas, A. Silva, and L. Gil. 2010. Cork agglomerates as an ideal core material in lightweight structures. Materials & Design 31(1):425–32. doi:10.1016/j.matdes.2009.05.039.
  • de Moura, M. F. S. F., P. M. L. C. Cavaleiro, F. G. A. Silva, and N. Dourado. 2017. Mixed-mode I+II fracture characterization of a hybrid carbon-epoxy/cork laminate using the single-leg bending test. Composites Science and Technology 141 (March). Elsevier: 24–31. doi:10.1016/J.COMPSCITECH.2017.01.001.
  • de Moura, M. F. S. F., R. Fernandes, F. G. A. Silva, and N. Dourado. 2015. Mode II fracture characterization of a hybrid cork/carbon-epoxy laminate. Composites Part B: Engineering 76(July):44–51. doi:10.1016/j.compositesb.2015.02.010.
  • Faruk, O., A. K. Bledzki, H.-P. Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science 37 (11). Elsevier Ltd: 1552–96. doi:10.1016/j.progpolymsci.2012.04.003.
  • Fernandes, F. A. O., R. J. S. Pascoal, and R. J. Alves de Sousa. 2014. Modelling impact response of agglomerated cork. Materials & Design 58:499–507. doi:10.1016/j.matdes.2014.02.011.
  • Fowler, P. A., J. Mark Hughes, and R. M. Elias. 2006. Biocomposites: Technology, environmental credentials and market forces. Journal of the Science of Food and Agriculture 86 (12). John Wiley & Sons, Ltd.: 1781–89. doi:10.1002/jsfa.2558.
  • Gameiro, C. P., J. Cirne, and G. Gary. 2007. Experimental study of the quasi-static and dynamic behaviour of cork under compressive loading. Journal of Materials Science 42 (12). Kluwer Academic Publishers-Plenum Publishers: 4316–24. doi:10.1007/s10853-006-0675-6.
  • George, J., I. Verpoest, and J. Ivens. 1999. Mechanical properties of flax fibre reinforced epoxy composites. Die Angewandte Makromolekulare Chemie 272(1):41–45. doi:10.1002/(SICI)1522-9505(19991201)272:1<41::AID-APMC41>3.0.CO;2-X.
  • Ghelli, D., and G. Minak. 2011. Low velocity impact and compression after impact tests on thin carbon/epoxy laminates. Composites Part B: Engineering 42(7):2067–79. doi:10.1016/j.compositesb.2011.04.017.
  • Gibson, L. J., and M. F. Ashby. 1999. Cellular solids, 2nd ed. New York, NY: Cambridge University Press.
  • Goutianos, S., T. Peijs, B. Nystrom, and M. Skrifvars. 2006. Development of flax fibre based textile reinforcements for composite applications. Applied Composite Materials 13 (4). Springer Netherlands: 199–215. doi:10.1007/s10443-006-9010-2.
  • Gurunathan, T., S. Mohanty, and S. K. Nayak. 2015. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing 77(June):1–25. doi:10.1016/j.compositesa.2015.06.007.
  • Hachemane, B., R. Zitoune, B. Bezzazi, and C. Bouvet. 2013. Sandwich composites impact and indentation behaviour study. Composites Part B: Engineering 51:1–10. doi:10.1016/j.compositesb.2013.02.014.
  • Jardin, R. T., F. A. O. Fernandes, A. B. Pereira, and R. J. Alves de Sousa. 2015. Static and dynamic mechanical response of different cork agglomerates. Materials & Design 68:121–26. doi:10.1016/j.matdes.2014.12.016.
  • Kasano, H. 1999. Recent advances in high-velocity impact perforation of fiber composite laminates. JSME International Journal Series A 42 (2). The Japan Society of Mechanical Engineers: 147–57. doi:10.1299/jsmea.42.147.
  • Ku, H., H. Wang, N. Pattarachaiyakoop, and M. Trada. 2011. A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering 42(4):856–73. doi:10.1016/j.compositesb.2011.01.010.
  • Lambert, J. P., and G. H. Jonas. 1976. Towards standardization in terminal ballistics testing: Velocity representation, Maryland, USA: USA Ballistic Research Laboratories.
  • Mancuso, A., G. Pitarresi, and D. Tumino. 2015. Mechanical behaviour of a green sandwich made of flax reinforced polymer facings and cork core. Procedia Engineering 109:144–53. Elsevier. doi:10.1016/j.proeng.2015.06.225.
  • Meredith, J., S. R. Coles, R. Powe, E. Collings, S. Cozien-Cazuc, B. Weager, J. Müssig, and K. Kirwan. 2013. On the static and dynamic properties of flax and cordenka epoxy composites. Composites Science and Technology 80(May):31–38. doi:10.1016/j.compscitech.2013.03.003.
  • Mittal, V., R. Saini, and S. Sinha. 2016. Natural fiber-mediated epoxy composites – A review. Composites Part B: Engineering 99:425–35. doi:10.1016/j.compositesb.2016.06.051.
  • Moreira, R. A. S., F. J. Q. De Melo, and J. F. Dias Rodrigues. 2010. Static and dynamic characterization of composition cork for sandwich beam cores. Journal of Materials Science 45 (12). Springer US: 3350–66. doi:10.1007/s10853-010-4356-0.
  • Nasirzadeh, R., and A. R. Sabet. 2014. Study of foam density variations in composite sandwich panels under high velocity impact loading. International Journal of Impact Engineering 63 (January). Pergamon: 129–39. doi:10.1016/J.IJIMPENG.2013.08.009.
  • Nasirzadeh, R., and A. R. Sabet. 2016. Influence of nanoclay reinforced polyurethane foam toward composite sandwich structure behavior under high velocity impact. Journal of Cellular Plastics 52 (3). SAGE PublicationsSage UK: London, England: 253–75. doi:10.1177/0021955X14557104.
  • Oliveira, V. M., E. Rosa, and H. Pereira. 2014. Variability of the compression properties of cork. Wood Science and Technology 48 (5). Springer Berlin Heidelberg: 937–48. doi:10.1007/s00226-014-0651-2.
  • Paulino, M., and F. Teixeira-Dias. 2011. An energy absorption performance index for cellular materials – Development of a side-impact cork padding. International Journal of Crashworthiness 16 (2). Taylor & Francis Group: 135–53. doi:10.1080/13588265.2010.536688.
  • Pawar, M. S., A. S. Kadam, P. C. Singh, V. V. Kusumkar, and O. S. Yemul. 2016. Rigid polyurethane foams from cottonseed oil using bio-based chain extenders: A renewable approach. Iranian Polymer Journal 25 (1). Springer Berlin Heidelberg: 59–68. doi:10.1007/s13726-015-0401-9.
  • Pereira, H. 2007. Cork: Biology, production and uses. The Netherlands: Elsevier.
  • Petit, S., C. Bouvet, A. Bergerot, and J.-J. Barrau. 2007. Impact and compression after impact experimental study of a composite laminate with a cork thermal shield. Composites Science and Technology 67(15):3286–99. doi:10.1016/j.compscitech.2007.03.032.
  • Phillips, S., J. Baets, L. Lessard, P. Hubert, and I. Verpoest. 2013. Characterization of flax/epoxy prepregs before and after cure. Journal of Reinforced Plastics and Composites 32(11):777–85. doi:10.1177/0731684412473359.
  • Reis, L., and A. Silva. 2009. Mechanical behavior of sandwich structures using natural cork agglomerates as core materials. Journal of Sandwich Structures and Materials 11 (6). SAGE Publications: 487–500. doi:10.1177/1099636209104523.
  • Reis, P. N. B., J. A. M. Ferreira, F. V. Antunes, and J. D. M. Costa. 2007. Flexural behaviour of hybrid laminated composites. Composites Part A: Applied Science and Manufacturing 38(6):1612–20. http://www.sciencedirect.com/science/article/pii/S1359835X06003587.
  • Richardson, M. O. W., and M. J. Wisheart. 1996. Review of low-velocity impact properties of composite materials. Composites Part A: Applied Science and Manufacturing 27 (12). Elsevier: 1123–31. doi:10.1016/1359-835X(96)00074-7.
  • Sanchez-Saez, S., E. Barbero, and J. Cirne. 2011. Experimental study of agglomerated-cork-cored structures subjected to ballistic impacts. Materials Letters 65(14):2152–54. doi:10.1016/j.matlet.2011.04.083.
  • Sanchez-Saez, S., E. Barbero, S. K. Garcia-Castillo, I. Ivañez, and J. Cirne. 2015. Experimental response of agglomerated cork under multi-impact loads. Materials Letters 160:327–30. doi:10.1016/j.matlet.2015.08.012.
  • Sanchez-Saez, S., S. K. García-Castillo, E. Barbero, and J. Cirne. 2015. Dynamic crushing behaviour of agglomerated cork. Materials & Design 65:743–48. doi:10.1016/j.matdes.2014.09.054.
  • Sarasini, F., J. Tirillò, S. D’Altilia, T. Valente, C. Santulli, F. Touchard, L. Chocinski-Arnault, D. Mellier, L. Lampani, and P. Gaudenzi. 2016. Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact. Composites Part B: Engineering 91:144–53. doi:10.1016/j.compositesb.2016.01.050.
  • Sargianis, J., H.-I. Kim, and J. Suhr. 2012. Natural cork agglomerate employed as an environmentally friendly solution for quiet sandwich composites. Scientific Reports 2:403. Nature Publishing Group. doi:10.1038/srep00403.
  • Silva, F. G. A., M. F. S. F. De Moura, and A. G. Magalhães. 2017. Low velocity impact behaviour of a hybrid carbon-epoxy/cork laminate. Strain 53(6):e12241. doi:10.1111/str.12241.
  • Silva, S. P., M. A. Sabino, E. M. Fernandes, V. M. Correlo, L. F. Boesel, and R. L. Reis. 2005. Cork: Properties, capabilities and applications. International Materials Reviews 50 (6). Taylor & Francis: 345–65. doi:10.1179/174328005X41168.
  • Sousa-Martins, J., D. Kakogiannis, F. Coghe, B. Reymen, and F. Teixeira-Dias. 2013. Behaviour of sandwich structures with cork compound cores subjected to blast waves. Engineering Structures 46:140–46. doi:10.1016/j.engstruct.2012.07.030.
  • Stanzione, M., V. Russo, A. Sorrentino, R. Tesser, M. Lavorgna, M. Oliviero, M. Di Serio, S. Iannace, and L. Verdolotti. 2016. Bio-based polyurethane foams from renewable resources. In AIP Conference Proceedings, 1736: 020130. AIP Publishing LLC. doi:10.1063/1.4949705.
  • Tita, V., J. de Carvalho, and D. Vandepitte. 2008. Failure analysis of low velocity impact on thin composite laminates: experimental and numerical approaches. Composite Structures 83(4):413–28. doi:10.1016/j.compstruct.2007.06.003.
  • Triantou, K., B. Perez, A. Marinou, S. Florez, K. Mergia, G. Vekinis, J. Barcena, W. Rotärmel, C. Zuber, and À. de Montbrun. 2017. Performance of cork and ceramic matrix composite joints for re-entry thermal protection structures. Composites Part B: Engineering 108 (January). Elsevier: 270–78. doi:10.1016/J.COMPOSITESB.2016.09.104.
  • Uddin, M. F., H. Mahfuz, S. Zainuddin, and S. Jeelani. 2009. Improving ballistic performance of polyurethane foam by nanoparticle reinforcement. Journal of Nanotechnology (January):1–8. Hindawi. doi:10.1155/2009/794740.
  • Walsh, J., H.-I. Kim, and J. Suhr. 2017. Low velocity impact resistance and energy absorption of environmentally friendly expanded cork core-carbon fiber sandwich composites. Composites Part A: Applied Science and Manufacturing 101 (October). Elsevier: 290–96. doi:10.1016/J.COMPOSITESA.2017.05.026.
  • Wang, J., A. M. Waas, and H. Wang. 2013. Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels. Composite Structures 96:298–311. http://www.sciencedirect.com/science/article/pii/S026382231200428X.
  • Zenkert, D., A. Shipsha, P. Bull, and B. Hayman. 2005. Damage tolerance assessment of composite sandwich panels with localised damage. Composites Science and Technology 65(15):2597–611. doi:10.1016/j.compscitech.2005.05.026.
  • Zhou, J., Z. W. Guan, W. J. Cantwell, M. Meo, A. J. Morris, R. Vignjevic, G. Marengo, et al. 2012. The perforation resistance of sandwich structures subjected to low velocity projectile impact loading. The Aeronautical Journal 116(1186):1247–62. Cambridge University Press. doi:10.1017/S0001924000007624.
  • Zhuang, J., S. H. Ghaffar, M. Fan, and J. Corker. 2017. Restructure of expanded cork with fumed silica as novel core materials for vacuum insulation panels. Composites Part B: Engineering 127 (October). Elsevier: 215–21. doi:10.1016/J.COMPOSITESB.2017.06.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.