208
Views
18
CrossRef citations to date
0
Altmetric
Articles

Characterization of microfiber isolated from Hibiscus sabdariffa var. altissima fiber by steam explosion

ORCID Icon, , , & ORCID Icon

References

  • Abraham, E., B. Deepa, L. A. Pothan, M. Jacob, S. Thomas, U. Cvelbar, and R. Anandjiwala. 2011. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydrate Polymers 86:1468–75. doi:10.1016/j.carbpol.2011.06.034.
  • Ahmad, F., H. S. Choi, and M. K. Park. 2015. A review: Natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromolecular Materials And Engineering 300:10–24. doi:10.1002/mame.201400089.
  • Alexy, P., B. Kosikova, and G. Podstranska. 2000. The effect of blending lignin with polyethylene and polypropylene on physical properties. Polymer 41:4901–08. doi:10.1016/S0032-3861(99)00714-4.
  • Andresen, M., L. Johansson, B. S. Tanem, and P. Stenius. 2006. Properties and characterization of hydrophobized micro fibrillated cellulose. Cellulose (Dordrecht, Netherlands) 13:665–77.
  • Cara, C., E. Ruiz, I. Ballesteros, M. J. Negro, and E. Castro. 2006. Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochemistry 41:423–29. doi:10.1016/j.procbio.2005.07.007.
  • Cherian, B. M., A. L. Leão, S. Ferreira De Souza, S. Thomas, L. A. Pothan, and M. Kottaisamy. 2010. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers 81:720–25. doi:10.1016/j.carbpol.2010.03.046.
  • Cristobal, C., R. Encarnacion, B. Ignacio, J. N. Maria, and C. Eulogio. 2006. Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochemistry 41:423–29. doi:10.1016/j.procbio.2005.07.007.
  • Deepa, B., E. Abraham, B. M. Cherian, A. Bismarck, J. J. Blacker, and L. A. Pothan. 2011. Structure, morphology and thermal characteristic of banana nanofibres obtained by steam explosion. Bioresource Technology 102:1988–97. doi:10.1016/j.biortech.2010.09.030.
  • Elanthikkal, S., U. Gopalakrishnapanicker, S. Varghese, and J. T. Guthrie. 2010. Cellulose microfibres produced from banana plant wastes: Isolation and characterization. Carbohydrate Polymers 80:852–59. doi:10.1016/j.carbpol.2009.12.043.
  • Fowler, P. A., J. M. Hughes, and R. M. Elias. 2006. Biocomposites: Technology, environmental credentials and market forces. Journal of the Science of Food and Agriculture 86:1781–89. doi:10.1002/(ISSN)1097-0010.
  • Geum-Hyun, D., L. Sun-Young, K. In-Aeh, and K. Young-To. 2004. Thermal behaviour of liquefied wood polymer composites (LWPC). Composite Structures 68:103–08.
  • Kar, V. R., T. R. Mahapatra, and S. K. Panda. 2015c. Nonlinear flexural analysis of laminated composite flat panel under hygro-thermo-mechanical loading. Steel and Composite Structures 19:1011–33. doi:10.12989/scs.2015.19.4.1011.
  • Kar, V. R., and S. K. Panda. 2015a. Large deformation bending analysis of functionally graded spherical shell using FEM. Structural Engineering and Mechanics 53:661–79. doi:10.12989/sem.2015.53.4.661.
  • Kar, V. R., and S. K. Panda. 2015b. Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel. Steel and Composite Structures 18:693–701. doi:10.12989/scs.2015.18.3.693.
  • Kumar, R., N. Rajesh Jesudoss Hyness, P. Senthamaraikannan, S. S. Saravanakumar, and M. R. Sanjay. 2017. Physicochemical and thermal properties of Ceiba pentandra bark fiber. Journal of Natural Fibers. doi:10.1080/15440478.2017.1369208.
  • Lojewska, J., P. Miskowiec, T. Lojewski, and L. M. Pronienwicz. 2005. Cellulose oxidative and hydrolytic degradation: In situ FTIR approach. Polymer Degradation and Stability 88:512–20. doi:10.1016/j.polymdegradstab.2004.12.012.
  • Maheshwarana, M. V., N. R. J. Hyness, P. Senthamaraikannan, S. S. Saravanakumarc, and M. R. Sanjay. 2017. Characterization of natural cellulosic fiber from Epipremnum aureum stem. Journal of Natural Fibers. doi:10.1080/15440478.2017.1321516.
  • Majeed, K., M. Jawaid, A. Hassan, A. A. Bakar, H. P. S. A. Khalil, A. A. Salema, and I. Inuwa. 2013. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials and Design 46:391–410. doi:10.1016/j.matdes.2012.10.044.
  • Manimaran, P., P. Senthamaraikannan, M. R. Sanjay, M. K. Marichelvam, and M. Jawaid. 2018. Study on characterization of Furcraea Foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydrate Polymers 181:650–58. doi:10.1016/j.carbpol.2017.11.099.
  • Mwaikambo, L. Y., and M. P. Ansell. 1999. The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Macromolecular Materials and Engineering 272:108–16.
  • Nakagaito, A. N., and H. Yano. 2005. Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Applied Physics A 80:155–59. doi:10.1007/s00339-003-2225-2.
  • Nishiyama, Y., P. Langan, and H. Chanzy. 2002. Crystal structure and hydrogen bonding system in cellulose I from synchrotron X-ray and neutron fiber diffraction. Journal of American Chemical Society 124:9074–82. doi:10.1021/ja0257319.
  • Ouajai, S., and R. A. Shanks. 2005. Composition, structure and thermal degradationof hemp cellulose after chemical treatments. Polymer Degradation and Stability 89:327–35. doi:10.1016/j.polymdegradstab.2005.01.016.
  • Sanjay, M. R., P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep. 2018. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production 172:566–81. doi:10.1016/j.jclepro.2017.10.101.
  • Segal, L., J. J. Creely, A. E. Martin, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray Diffractometer. Textile Research Journal 29:786–94. doi:10.1177/004051755902901003.
  • Singha, A. S., V. K. Thakur, I. K. Mehta, A. Shama, A. J. Khanna, R. K. Rana, and A. K. Rana. 2009. Surface modified Hibiscus sabdariffa fibers: Physico-chemical, thermal and morphological properties evaluation. International Journal of Polymer Analysis and Characterization 14:695–711. doi:10.1080/10236660903325518.
  • Sonia, A., and K. P. Dasan. 2013. Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydrate Polymers 92:668–74. doi:10.1016/j.carbpol.2012.09.015.
  • Turbak, A. F., F. W. Snyder, and K. R. Sandberg. 1983. Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential. Journal of Applied Polymer Science 37:815–27.
  • Vignon, M. R., C. Garcia-Jaldon, and D. Dupeyre. 1995. Steam explosion of woody hempchenevotte. Biomacromolecules 17:395–404.
  • Wotzel, K., R. Wirth, and M. Flake. 1999. Life cycle studies on hemp fibre reinforced components and ABS for automotive parts. Macromolecular Materials and Engineering 272:121–27.
  • Xiao, B., X. F. Sun, and R. C. Sun. 2005. Chemical, structural and thermal characterizations of alkali-soluble lignins and hemicelluloses and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation Stability 74:307–19. doi:10.1016/S0141-3910(01)00163-X.
  • Yang, H., R. Yan, H. Chen, H. L. Dong, and C. Zheng. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–88. doi:10.1016/j.fuel.2006.12.013.
  • Yao, F., Q. Wu, Y. Lei, and Y. Xu. 2008. Rice straw fiber-reinforced high-density polyethylene composite: Effect of fiber type and loading. Industrial Crops and Products 28:63–72. doi:10.1016/j.indcrop.2008.01.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.