1,214
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Recycling of Cotton Fibers Separated from the Waste Blend Fabric

, , , &

References

  • Algin, H. M., and P. Turgut. 2008. Cotton and limestone powder wastes as brick material. Construction and Building Materials 22:1074–80. doi:10.1016/j.conbuildmat.2007.03.006.
  • Aoki, D., Y. Teramoto, and Y. Nishio. 2007. SH-containing cellulose acetate derivatives: preparation and characterization as a shape memory-recovery material. Biomacromolecules 8 (12):3749–57. doi:10.1021/bm700879t.
  • Balat, M., and H. Balat. 2009. Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy 86 (11):2273–82. doi:10.1016/j.apenergy.2009.03.015.
  • Béguin, P. 1990. Molecular biology of cellulose degradation. Annual Review of Microbiology 44:219–48. doi:10.1146/annurev.mi.44.100190.001251.
  • Broll, D., C. Kaul, A. Kramer, P. Krammer, T. Richter, and M. Jung. 1999. Chemistry in supercritical water. Angewandte Chemie International Edition 38 (20):2998–3014.
  • Dashtbani, R., and E. Afra. 2015. Producing cellulose nanofiber from cotton wastes by electrospinning method. International Journal of Nano Dimension 6 (1):1–9.
  • Eckelt, J., T. Eich, T. Röder, H. Rüf, H. Sixta, and B. Wolf. 2009. Phase diagram of the ternary system NMMO/water/cellulose. Cellulose 16 (3):373–79. doi:10.1007/s10570-009-9276-2.
  • Fink, H. P., P. Weigel, H. J. Purz, and J. Ganster. 2001. Structure formation of regenerated cellulose materials from NMMO-solutions. Progress in Polymer Science. 26:1473–524. doi:10.1016/S0079-6700(01)00025-9.
  • Gordon, S., and Y. L. Hsieh. 2007. Cotton: Science and Technology. Cambridge: Woodhead Publishing Ltd.
  • Guo, L. Y., T. J. Shi, Z. Li, Y. P. Duan, and Y. G. Wang. 2008. Synthesis of novel and functionalized ionie liquid [HeEIM]Cl and its solubility for cotton fibre. Chemical Journal of Chinese Universities 29 (9):1901–07.
  • Hamelinck, C. N., G. Van Hooijdonk, and A. P. Faaij. 2005. Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy 28 (4):384–410. doi:10.1016/j.biombioe.2004.09.002.
  • Haule, L. V., C. M. Carr, and M. Rigout. 2016. Preparation and physical properties of regenerated cellulose fibres from cotton waste garments. Journal of Cleaner Production 112 (5):4445–51. doi:10.1016/j.jclepro.2015.08.086.
  • Heinze, T., and T. Liebert. 2001. Unconventional methods in cellulose functionalization. Progress in Polymer Science 26 (9):1689–762. doi:10.1016/S0079-6700(01)00022-3.
  • Holm, J., and U. Lassi. 2011. Ionic liquids in the pretreatment of lignocellulosic biomass. InTech, Finland: Ionic Liquids: Applications and Perspectives 24:545–60.
  • Hong, F., X. Guo, S. Zhang, S. F. Han, G. Yang, and L. J. Jönsson. 2012. Bacterial cellulose production from cotton-based waste textiles: Enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresources Technology 104:503–08. doi:10.1016/j.biortech.2011.11.028.
  • Hou, W. S. 2013. Stripping treatment method for cotton-polyester blended fabric. Patent Z201310615266.2.
  • Ioelovich, M., and E. Morag. 2011. Effect of cellulose structure on enzymatic hydrolysis. Bioresources 6:2818–35.
  • Isogai, A., and R. Atalla. 1998. Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5 (4):309–19. doi:10.1023/A:1009272632367.
  • Jeihanipour, A., K. Karimi, C. Niklasson, and M. J. Taherzadeh. 2010. A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles. Waste Management 30:2504–09. doi:10.1016/j.wasman.2010.06.026.
  • Jeihanipour, A., K. Karimi, and M. J. Taherzadeh. 2010b. Enhancement of ethanol and biogas production from high-crystalline cellulose by different modes of NMMO pretreatment. Biotechnol Bioeng 105 (3):469–76. doi:10.1002/bit.22558.
  • Jeihanipour, A., and M. J. Taherzadeh. 2009. Ethanol production from cotton-based waste textiles. Bioresource Technology 100 (2):1007–10. doi:10.1016/j.biortech.2008.07.020.
  • Kuo, C. H., and C. K. Lee. 2009. Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. Bioresource Technology 100:866–71. doi:10.1016/j.biortech.2008.07.001.
  • Kuo, C. H., P. J. Lin, and C. K. Lee. 2010. Enzymatic saccharification of dissolution pretreated waste cellulosic fabrics for bacterial cellulose production by Gluconacetobacter xylinus. Journal of Chemical Technology & Biotechnology 85 (10):1346–52. doi:10.1002/jctb.2439.
  • Mansfield, S. D., C. Mooney, and J. N. Saddler. 1999. Substrate and enzymecharacteristics that limit cellulose hydrolysis. Biotechnology Progress 15:804–16. doi:10.1021/bp9900864.
  • Morton, W. E., and J. W. S. Hearle. 2008. Physical properties of textile fibres (Woodhead Publishing Series in Textiles), Woodhead Publishing, CRC.
  • Murashima, K., C. L. Chen, A. Kosugi, Y. Tamaru, and R. H. Doi. 2002. Synergistic effects on crystalline cellulose degradation between cellulosomal cellulases from Clostridium cellulovorans. Journal of Bacteriology 184:5088–95.
  • Negulescu, I. I., H. Kwon, B. J. Collier, J. R. Collier, and A. Pendse. 1998. Recycling cotton from cotton/polyester fabrics. Textile Chemist & Colorist 30 (6):31–35.
  • Niu, H. T., W. B. Cheng, H. J. Zhuang, and W. Zheng. 2007. Study of theological behavior of ce-Ilulose/[C2OHMIM]Cl solutions. Journal of Tianjin Polytechnic University 26 (4):1–4.
  • Ouchi, A., T. Toida, S. Kumaresan, W. Ando, and J. Kato. 2010. A new methodology to recycle polyester from fabric blends with cellulose. Cellulose 17:215–22. doi:10.1007/s10570-009-9358-1.
  • Parsiegla, G., A. K. Schmid, and G. E. Schulz. 1998. Substrate binding to a cyclodextrin glycosyl-transferase and mutations increasing the gamma-cyclodextrin production. Europe Journal Biochemistry 255:710–17. doi:10.1046/j.1432-1327.1998.2550710.x.
  • Perepelkin, K. E. 2007. Lyocell fibres based on direct dissolution of cellulose in N-methylmorpholine N-oxide: Development and prospects. Fibre Chemistry 39 (2):163–72. doi:10.1007/s10692-007-0032-9.
  • Ren, Q., J. Wu, J. Zhang, J. He, and M. L. Guo. 2003. Synthesis of 1-Allyl, 3-Methylimidazolium-based room-temperature ionic liquid and preliminary study of its dissolving cellulose. Acta Polymerica Sinica, 3:448–51.
  • Rogers, R. D., and K. R. Seddon. 2003. Ionic liquids— solvents of the future? Science 302:792–93.
  • Rosenau, T., A. Hofinger, A. Potthast, and P. Kosma. 2003. On the conformation of the cellulose solvent N -methylmorpholine- N -oxide (NMMO) in solution. Polymer 44 (20):6153–58. doi:10.1016/S0032-3861(03)00663-3.
  • Russell, S., G. Ward, and A. Hewitt. 2013. Fibre composition of donated post-consumer clothing in the UK. Ice Proceedings 166 (166):29–37.
  • Sankauskaitė, A., L. Stygienė, M. D. Tumėnie Nė, S. Krauledas, and L. Jovaišienė. 2014. Investigation of cotton component destruction in cotton/polyester blended textile waste materials. Materials Science (Medžiagotyra) 20:189–92.
  • Schimper, C. B., C. Ibanescu, R. Keckeis, and T. Bechtold. 2008. Advantages of a two-step enzymatic process for cotton-polyester blends. Biotechnology Letters 30 (3):455–59. doi:10.1007/s10529-007-9569-1.
  • Shafiei, M., K. Karimi, and M. J. Taherzadeh. 2010. Pretreatment of spruce and oak by Nmethylmorpholine-N-oxide (NMMO) for efficient conversion of their cellulose to ethanol. Bioresource Technology 101:4914–18. doi:10.1016/j.biortech.2009.08.100.
  • Shen, F., W. X. Xiao, L. L. Lin, G. Yang, Y. Z. Zhang, and S. H. Deng. 2013. Enzymatic saccharification coupling with polyester recovery from cotton-based waste textiles by phosphoric acid pretreatment. Bioresource Technology 130:248–55. doi:10.1016/j.biortech.2012.12.025.
  • Shen, J. C., and F. A. Agblevor. 2008. Optimization of enzyme loading and hydrolytic time in the hydrolysis of mixtures of cotton gin waste and recycled paper sludge for the maximum profit rate. Biochemical Engineering Journal 41 (3):241–50. doi:10.1016/j.bej.2008.05.001.
  • Shi, S., J. M. Dai, W. S. Hou, Y. F. Zhang, S. H. Wang, and X. H. Chen. 2016. Study on cotton fiber’s carbonization into carbon microsphere under subcritical water’s condition. New Carbon Materials 31:144–50.
  • Shojaei, K. M., F. Dadashian, and M. Montazer. 2012. Recycling of cellulosic fibers by enzymatic process. Applied Biochemistry and Biotechnology 166 (3):744–52. doi:10.1007/s12010-011-9463-0.
  • Silva, R. D., X. G. Wang, and N. Byrne. 2014. Recycling textiles: the use of ionic liquids in the separation of cotton polyester blends. RSC Advances 4:29094–98. doi:10.1039/C4RA04306E.
  • Sun, X. W., C. H. Lu, Y. Liu, W. Zhang, and X. X. Zhang. 2014. Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics, Carbohydrate. Polymers 101:642–49.
  • Sun, X. W., C. H. Lu, W. Zhang, D. Tian, and X. X. Zhang. 2013. Acetone-soluble cellulose acetate extracted from waste blended fabrics via ionic liquid catalyzed acetylation. Carbohydrate Polymers 98 (1):405–11. doi:10.1016/j.carbpol.2013.05.089.
  • Teeri, T. T. 1997. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Tibtech 15:160–67. doi:10.1016/S0167-7799(97)01032-9.
  • Tomme, P., D. P. Driver, E. A. Amandoron, and R. C. Miller. 1995. Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain. Journal of Bacteriology 177:4356–63.
  • Uchimaru, M., T. Kimura, and T. Sato. 2014. Study on recycling system of waste textiles based on colour. Journal of Textile Engineering 59 (6):159–64. doi:10.4188/jte.59.159.
  • Wakelyn, P. J., N. R. Bertoniere, A. D. French, D. P. Thibodeaux, B. A. Triplett, M. A. Rousselle, W. R. Goynes, and M. Lewin. 2007. Cotton fiber chemistry and technology. CRC Press, USA.
  • Wang, S. H., M. X. Wei, Q. L. Xu, and H. S. Jia. 2016. Functional porous carbons from waste cotton fabrics for dyeing wastewater purification. Fibers and Polymers 17 (2):212–19. doi:10.1007/s12221-016-5749-8.
  • Wang, Y., Y. L. Zhao, and Y. L. Deng. 2008. Effect of enzymatic treatment on cotton fiber dissolution in NaOH/urea solution at cold temperature. Carbohydrate Polymers 72:178–84. doi:10.1016/j.carbpol.2007.08.003.
  • Zavrel, M., D. Bross, M. Funke, J. Büchs, and A. C. Spiess. 2009. High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresource Technology. 100 (9):2580–87. doi:10.1016/j.biortech.2008.11.052.
  • Zhang, H., N. N. Zhao, and L. L. Liu. 2010. Research progress of dissolution behavior and mechanism of cellulose in ionic liquids. Chemical Research 6:96–99.
  • Zhang, Y. H. P., J. Cui, L. R. Lynd, and L. R. Kuang. 2006. A transition from cellulose swelling to cellulose dissolution by phosphoric acid. Biomacromolecules 7:644–48. doi:10.1021/bm060464a.
  • Zhang, Y. H. P., S. Y. Ding, J. R. Mielenz, J. B. Cui, R. T. Elander, M. Laser, M. E. Himmel, J. D. McMillan, and L. R. Lynd. 2007. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnology and Bioengineering 97 (2):214–23. doi:10.1002/bit.21386.
  • Zhang, Y. H. P., and L. R. Lynd. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering 88 (7):797–824. doi:10.1002/bit.20282.
  • Zhao, H., C. L. Jones, G. A. Xia, S. Baker, O. Olubajo, and V. N. Person. 2009. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. Journal of Biotechnology 139 (1):47–54. doi:10.1016/j.jbiotec.2008.08.009.
  • Zhao, H., J. H. Kwak, Y. Wang, J. A. Franz, J. M. White, and J. E. Holladay. 2007. Interactions between cellulose and N-methylmorpholine-N-oxide. Carbohydrate Polymers 67:97–103. doi:10.1016/j.carbpol.2006.04.019.
  • Zheng, J. Y., Q. L. Zhao, and Z. F. Ye. 2014. Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste. Applied Surface Science 99:86–91. doi:10.1016/j.apsusc.2014.01.190.
  • Zhu, S. D., Y. X. Wu, Q. M. Chen, Z. N. Yu, C. W. Wang, S. W. Jin, Y. G. Ding, and G. Wu. 2006. Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chemistry 8:325–27. doi:10.1039/b601395c.
  • Zou, Y., N. Reddy, and Y. Yang. 2011. Reusing polyester/cotton blend fabrics for composites. Composites: Part B:Engineering 42:763–70. doi:10.1016/j.compositesb.2011.01.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.