189
Views
17
CrossRef citations to date
0
Altmetric
Articles

Mercerizing Extraction and Physicochemical Characterizations of Lignocellulosic Fiber from the Leaf Waste of Mikania micrantha Kunth ex H.B.K

, , &

References

  • American Standards for Testing and Materials (ASTM), D570. 1998. Standard test method for water absorption of polymers and plastics, International. West Conshohocken, PA.
  • Asim, M., K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M. R. Ishak, and M. E. Hoque. 2015. A review on pineapple leaves fibre and its composites. International Journal of Polymer Science 950567:1–16. doi:10.1155/2015/950567.
  • Association of Official Analytical Chemists, AOAC. 2000. Official methods of analysis. AOAC International, Washington, DC.
  • Avelar, F. F., M. L. Bianchi, M. Goncalves, and E. G. Mota. 2010. The use of piassava fibers (Attalea funifera) in the preparation of activated carbon. Bioresource Technology 101:4639–45. doi:10.1016/j.biortech.2010.01.103.
  • Banerjee, R., A. D. Chintagunta, and S. Ray. 2017. A cleaner and eco-friendly bioprocess for enhancing reducing sugar production from pineapple leaf waste. Journal of Cleaner Production 149:387–95. doi:10.1016/j.jclepro.2017.02.088.
  • Barakat, A., H. de Vries, and X. Rouau. 2013. Dry fractionation process as an important step in current and future lignocellulose biorefineries: A review. Bioresource Technology 134:362–73. doi:10.1016/j.biortech.2013.01.169.
  • Benini, K. C. C. C., H. J. C. Voorwald, M. O. H. Cioffi, A. C. Milanese, and H. L. Ornaghi. 2016. Characterization of a new lignocellulosic fiber from Brazil: imperata brasiliensis (Brazilian Satintail) as an alternative source for nanocellulose extraction. Journal of Natural Fibers 14:112–25. doi:10.1080/15440478.2016.1167647.
  • Célino, A., S. Freour, F. Jacquemin, and P. Casari. 2014. The hygroscopic behavior of plant fibers: a review. Frontiers in Chemistry: Polymer Chemistry 1 (43):1–12. doi:10.3389/fchem.2013.00043.
  • Célino, A., S. Fréour, F. Jacquemin, and P. Casari. 2013. Characterization and modeling of the moisture diffusion behaviour of natural fibres. Journal of Applied Polymer Science 130:297–306. doi:10.1002/app.39148.
  • Chowdhury, S. R., R. K. Basak, R. Sen, and B. Adhikari. 2012. Utilization of lignocellulosic natural fiber (jute) components during a microbial polymer production. Materials Letters 66:216–18. doi:10.1016/j.matlet.2011.08.040.
  • Danso, H., D. B. Martinson, M. Ali, and J. B. Williams. 2015. Effect of sugarcane bagasse fibre on the strength properties of soil blocks. International Conference on Bio-based Building Materials, Clermont-Ferrand, France, June 22nd-24th.
  • Daud, Z., M. Zainuri, M. Hatta, A. Sari, M. Kassim, H. Awang, and A. M. Aripin. 2014. Exploring of agro waste (pineapple leaf, corn stalk, and Napier grass) by chemical composition and morphological study. Bioresources 9:872–80.
  • Dube, S., and C. Chiyaka. 2010. Biological and physical features of sisal (agave sp.). Varieties Growing in Matebeleland Region. Journal Of Biology and Life Sciences 1:22-26.
  • Elanthikkal, S., U. Gopalakrishnapanicker, S. Varghese, and J. T. Guthrie. 2010. Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydrate Polymers 80 (3):852–59. doi:10.1016/j.carbpol.2009.12.043.
  • Flory, S. L., and K. Clay. 2009. Invasive plant removal method determines native plant community responses. Journal of Applied Ecology 46:434–42. doi:10.1111/jpe.2009.46.issue-2.
  • Gharehchahi, E., A. H. Mahvi, S. M. T. Shahri, and R. Davani. 2014. Possibility of application of kenaf fibers (Hibiscus cannabinus L.) in water hardness reduction. Desalination and Water Treatment 52:31–33. doi:10.1080/19443994.2013.819137.
  • Holm, L. G., D. L. Plucknett, J. V. Pancho, and J. P. Herberger. 1977. The world’s worst weeds: distribution and biology. Honolulu, HI: University Press of Hawaii.
  • Hujuri, U., S. K. Chattopadhay, R. Uppaluri, and A. K. Ghoshal. 2008. Effect of maleic anhydride grafted polypropylene on the mechanical and morphological properties of chemically modified short-pineapple-leaf-fiber-reinforced polypropylene composites. Journal of Applied Polymer Science 107 (3):1507–16. doi:10.1002/(ISSN)1097-4628.
  • Hulle, A., P. Kadole, and P. Katkar. 2015. Agave Americana leaf fibers. Fibers 3:64–75. doi:10.3390/fib3010064.
  • Jose, S., S. Rajna, and P. Ghosh. 2017. Ramie fibre processing and value addition. Asian Journal of Textile 7 (1):1–9. doi:10.3923/ajt.2017.1.9.
  • Kalia, S., A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos. 2011. Cellulose-based bio- and nanocomposites: A review. International Journal of Polymer Science 837875:1–35.
  • Khan, G. M. A., S. R. S. Palash, M. S. Alam, A. K. Chakraborty, M. A. Gafur, and M. Terano. 2012. Isolation and characterization of betel nut leaf fiber: Its potential application in making composites. Polymer Composites 33 (5):764–72. doi:10.1002/pc.v33.5.
  • Kumar, D. S., D. E. Tony, A. P. Kumar, K. A. Kumar, D. B. S. Rao, and R. Nadendla. 2013. A review on: Abelmoschus esculentus (okra). International Research Journal of Pharmaceutical and Applied Sciences 3 (4):129–32.
  • Lundberg, B., X. J. Pan, A. White, H. Chau, and A. Hotchkiss. 2014. Rheology and composition of citrus fiber. Journal of Food Engineering 125:97–104. doi:10.1016/j.jfoodeng.2013.10.021.
  • Maheswari, C. U., K. O. Reddy, E. Muzenda, B. R. Guduri, and A. V. Rajulu. 2012. Extraction and characterization of cellulose microfibrils from agricultural residue-Cocos nucifera L. Biomass and Bioenergy 46 (12):555–63. doi:10.1016/j.biombioe.2012.06.039.
  • Michel, S. A., R. R. Vogels, N. D. Bouvy, M. L. Knetsch, N. M. van den Akker, M. J. Gijbels, C. van der Marels, J. Vermeersch, D. G. Molin, and L. H. Koole. 2014. Utilization of flax fibers for biomedical applications. Journal of Biomedical Materials Research 102 (3):477–87. doi:10.1002/jbm.b.33025.
  • Moreira, T. M., and E. S. M. Seo. 2016. Corn leaf fibers preparation and characterization for composite obtention. Materials Science Forum 881:271–76. doi:10.4028/www.scientific.net/MSF.881.271.
  • Oushabi, A., S. Sair, F. O. Hassani, Y. Abboud, O. Tanane, and A. El-Bouari. 2017. The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): study of the interface of DPF–Polyurethane composite. South African Journal of Chemical Engineering 23:116–23. doi:10.1016/j.sajce.2017.04.005.
  • Rachini, A., M. Le Troedec, C. Peyratout, and A. Smith. 2009. Comparison of the thermal degradation of natural, alkali-treated and silane-treated hemp fibers under air and an inert atmosphere. Journal of Applied Polymer Science 112 (1):226–34. doi:10.1002/app.v112:1.
  • Rai, R. K., M. Sandilya, and R. Subedi. 2012. Controlling Mikania micrantha HBK: how effective manual cutting is? Journal of Ecology and Field Biology 35 (3):235–42.
  • Ranganathan, S. R. 1994. Development and potential of jute geotextiles. Geotextiles and Geomembranes 13 (6–7):421–33. doi:10.1016/0266-1144(94)90006-X.
  • Ray, D., B. K. Sarkar, A. K. Rana, and N. R. Bose. 2001. Effect of alkali treated jute fibres on composite properties. Bulletin of Materials Science 24 (2):129–35. doi:10.1007/BF02710089.
  • Reddy, K. O., B. Ashok, K. R. N. Reddy, Y. E. Feng, J. Zhang, and A. V. Rajulu. 2014. Extraction and characterization of novel lignocellulosic fibers from Thespesia Lampas plant. International Journal of Polymer Analysis and Characterization 19 (1):48–61. doi:10.1080/1023666X.2014.854520.
  • Reddy, K. O., C. U. Maheswari, D. J. P. Reddy, and A. V. Rajulu. 2009. Thermal properties of napier grass fibers. Materials Letters 63:2390–92. doi:10.1016/j.matlet.2009.08.035.
  • Reddy, K. O., C. U. Maheswari, E. Muzenda, M. Shukla, and A. V. Rajulu. 2016. Extraction and characterization of cellulose from pretreated Ficus (Peepal tree) leaf fibers. Journal of Natural Fibers 13:54–64. doi:10.1080/15440478.2014.984055.
  • Reddy, K. O., C. U. Maheswari, M. Shukla, J. I. Song, and A. V. Rajulu. 2013. Tensile and structural characterization of alkali treated Borassus fruit fine fibers. Composites Part B: Engineering 44 (1):433–38. doi:10.1016/j.compositesb.2012.04.075.
  • Reddy, N., and Y. Q. Yang. 2009. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresource Technology 100:3563–69. doi:10.1016/j.biortech.2009.02.047.
  • Salentijn, E. M. J., Q. Y. Zhang, S. Amaducci, M. Yang, and L. M. Trindade. 2015. New developments in fiber hemp (Cannabis sativa L.) breeding. Industrial Crops and Products 68:32–41. doi:10.1016/j.indcrop.2014.08.011.
  • Santana-Meridas, O., A. Gonzalez-Coloma, and R. Sanchez-Vioque. 2012. Agricultural residues as a source of bioactive natural products. Phytochemistry Reviews 11 (4):447–66. doi:10.1007/s11101-012-9266-0.
  • Segal, L. G. J. M. A., J. J. Creely, A. E. Martin, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29 (10):786–94. doi:10.1177/004051755902901003.
  • Singh, B., D. K. Sharma, R. Kumar, and A. Gupta. 2010. Development of a new controlled pesticide delivery system based on neem leaf powder. Journal of Hazardous Materials 177:290–99. doi:10.1016/j.jhazmat.2009.12.031.
  • Sreekala, M. S., M. G. Kumaran, S. Joseph, M. Jacob, and S. Thomas. 2000. Oil palm fibre reinforced phenol formaldehyde composites: Influence of fibre surface modifications on the mechanical performance. Applied Composite Materials 7 (5–6):295–329. doi:10.1023/A:1026534006291.
  • Tarrsini, M., Y. P. Teoh, Q. H. Ng, B. Kunasundari, Z. X. Ooi, H. S. Shuit, and P. Y. Hoo. 2018. Practicability of lignocellulosic waste composite in controlling air pollution from leaves litter through bioethanol production. IOP Conference Series: Materials Science and Engineering 318:012001. doi:10.1088/1757-899X/318/1/012001.
  • Verma, D., P. C. Gope, A. Shandilya, A. Gupta, and M. K. Maheshwari. 2013. Coir fibre reinforcement and application in polymer composites: A review. Journal of Materials and Environmental Science 4 (2):263–76.
  • Ververis, C., K. Georghiou, D. Danielidis, D. G. Hatzinikolaou, P. Santas, R. Santas, and V. Corleti. 2007. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresource Technology 98:296–301. doi:10.1016/j.biortech.2006.01.007.
  • Vijayalakshmi, K., C. Y. K. Neeraja, A. Kavitha, and J. Hayavadana. 2014. Abaca fibre. Transactions on Engineering and Sciences 2 (9):16–19.
  • Zainuddin, M. F., R. Shamsudin, M. N. Mokhtar, and D. Ismail. 2014. Physicochemical properties of pineapple plant waste fibers from the leaves and stems of different varieties. BioResources 9 (3):5311–24. doi:10.15376/biores.9.3.5311-5324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.