260
Views
43
CrossRef citations to date
0
Altmetric
Articles

Effectiveness of Alkali and Sodium Bicarbonate Treatments on Sugar Palm Fiber: Mechanical, Thermal, and Chemical Investigations

ORCID Icon, , ORCID Icon &

References

  • ASTM D1103-60. 1977. Method of test for alpha-cellulose in wood. West Conshohocken: ASTM International.
  • ASTM D1106-96. 2013. Standard test methods for acid-insoluble lignin in wood. West Conshohocken: ASTM International.
  • ASTM-D3822/D3822M. 2014. Standard test method for tensile properties of single textile fibers. West Conshohocken: ASTM International.
  • Bachtiar, D., M. S. Salit, E. Zainuddin, K. Abdan, and K. Z. H. M. Dahlan. 2011. Effects of alkaline treatment and a compatibilizing agent on tensile properties of sugar palm fibre-reinforced high impact polystyrene composites. BioResources 6 (4):4815–23.
  • Birnin-Yauri, A. U., N. A. Ibrahim, N. Zainuddin, K. Abdan, Y. Y. Then, and B. W. Chieng. 2016. Enhancement of the mechanical properties and dimensional stability of oil palm empty fruit bunch-kenaf core and oil palm mesocarp-kenaf core hybrid fiber-reinforced poly (lactic acid) biocomposites by borax decahydrate modification of fibers. BioResources 11 (2):4865–84. doi:10.15376/biores.11.2.4865-4884.
  • Borchani, K. E., C. Carrot, and M. Jaziri. 2015. Untreated and alkali treated fibers from Alfa stem: Effect of alkali treatment on structural, morphological and thermal features. Cellulose 22 (3):1577–89. doi:10.1007/s10570-015-0583-5.
  • Cadena Ch, E. M., R. J. M. Vélez, J. F. Santa, and G. Viviana Otálvaro. 2017. Natural fibers from plantain pseudostem (Musa Paradisiaca) for use in fiber-reinforced composites. Journal of Natural Fibers 14 (5):678–90. doi:10.1080/15440478.2016.1266295.
  • Cai, M., H. Takagi, A. N. Nakagaito, M. Katoh, T. Ueki, G. I. N. Waterhouse, and Y. Li. 2015. Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Industrial Crops and Products 65:27–35. doi:10.1016/j.indcrop.2014.11.048.
  • Cai, M., H. Takagi, A. N. Nakagaito, L. Yan, and G. I. N. Waterhouse. 2016. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing 90:589–97. doi:10.1016/j.compositesa.2016.08.025.
  • Edhirej, A., S. M. Sapuan, M. Jawaid, and N. I. Zahari. 2017. Cassava/sugar palm fiber reinforced cassava starch hybrid composites: physical, thermal and structural properties. International Journal of Biological Macromolecules 101:75–83. doi:10.1016/j.ijbiomac.2017.03.045.
  • Erdoğan, U. H., Y. Seki, G. Aydoğdu, B. Kutlu, and A. Akşit. 2016. Effect of different surface treatments on the properties of jute. Journal of Natural Fibers 13 (2):158–71. doi:10.1080/15440478.2014.1002149.
  • Fiore, V., T. Scalici, F. Nicoletti, G. Vitale, M. Prestipino, and A. Valenza. 2016. A new eco-friendly chemical treatment of natural fibres: effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Composites Part B: Engineering 85:150–60. doi:10.1016/j.compositesb.2015.09.028.
  • Fiore, V., T. Scalici, and A. Valenza. 2017. Effect of sodium bicarbonate treatment on mechanical properties of flax-reinforced epoxy composite materials. Journal of Composite Materials, 52(8), 1061-1072 .
  • Ishak, M. R., Z. Leman, S. M. Sapuan, M. Z. A. Rahman, and U. M. K. Anwar. 2013. Chemical composition and FT-IR spectra of sugar palm (Arenga pinnata) fibers obtained from different heights. Journal of Natural Fibers 10 (2):83–97. doi:10.1080/15440478.2012.733517.
  • Ishak, M. R., Z. Leman, S. M. Sapuan, M. Y. Salleh, and S. Misri. 2009. The effect of sea water treatment on the impact and flexural strength of sugar palm fibre reinforced epoxy composites. International Journal of Mechanical and Materials Engineering (IJMME) 4 (3):316–20.
  • Liu, Z.-T., Y. Yang, L. Zhang, Z.-W. Liu, and H. Xiong. 2007. Study on the cationic modification and dyeing of ramie fiber. Cellulose 14 (4):337–45. doi:10.1007/s10570-007-9117-0.
  • Liu, Z.-T., Y. Yang, L. Zhang, P. Sun, Z.-W. Liu, L. Jian, H. Xiong, Y. Peng, and S. Tang. 2008. Study on the performance of ramie fiber modified with ethylenediamine. Carbohydrate Polymers 71 (1):18–25. doi:10.1016/j.carbpol.2007.05.008.
  • Morán, J. I., V. A. Alvarez, V. P. Cyras, and A. Vázquez. 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15 (1):149–59. doi:10.1007/s10570-007-9145-9.
  • Mouhoubi, S., M. E. H. Bourahli, H. Osmani, and S. Abdeslam. 2017. Effect of alkali treatment on alfa fibers behavior. Journal of Natural Fibers 14 (2):239–49. doi:10.1080/15440478.2016.1193088.
  • Mukhtar, I., Z. Leman, M. R. Ishak, and E. S. Zainudin. 2016. Sugar palm fibre and its composites: a review of recent developments. BioResources 11 (4):10756–82. doi:10.15376/biores.11.4.10756-10782.
  • Mukhtar, I., Z. Leman, M. R. Ishak, and E. S. Zainudin. 2018. Thermal and physicochemical properties of sugar palm fibre treated with borax. IOP Conference Series: Materials Science and Engineering. 368: 012038. doi:10.1088/1757-899X/368/1/012038
  • Nayak, S., and J. R. Mohanty. 2018. Influence of chemical treatment on tensile strength, water absorption, surface morphology, and thermal analysis of areca sheath fibers. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2018.1430650
  • Owolabi, A. F., A. Ghazali, H. P. S. Abdul Khalil, A. Hassan, R. Arjmandi, M. R. Nurul Fazita, and M. K. Mohamad Haafiz. 2016. Isolation and characterization of microcrystalline cellulose from oil palm fronds using chemomechanical process. Wood and Fiber Science 48 (4):1–11.
  • Rashid, B., Z. Leman, M. Jawaid, M. J. Ghazali, and M. R. Ishak. 2016. Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: Effect of treatment. Cellulose 23 (5):2905–16. doi:10.1007/s10570-016-1005-z.
  • Ridzuan, M. J. M., M. S. Abdul Majid, M. Afendi, S. N. Aqmariah Kanafiah, J. M. Zahri, and A. G. Gibson. 2016. Characterisation of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer composites. Materials & Design 89:839–47. doi:10.1016/j.matdes.2015.10.052.
  • Sahari, J., S. M. Sapuan, Z. N. Ismarrubie, and M. Z. A. Rahman. 2012. Physical and chemical properties of different morphological parts of sugar palm fibres. Fibres & Textiles in Eastern Europe, 91(2), 21–24.
  • Santos, J. C., R. L. Siqueira, L. M. G. Vieira, R. T. S. Freire, V. Mano, and T. H. Panzera. 2018. Effects of sodium carbonate on the performance of epoxy and polyester coir-reinforced composites. Polymer Testing 67:533–44. doi:10.1016/j.polymertesting.2018.03.043.
  • Sapuan, S. M., D. Bachtiar, and M. M. Hamdan. 2010. Flexural properties of alkaline treated sugar palm fibre reinforced epoxy composites. International Journal of Automotive and Mechanical Engineering (IJAME) 1:79–90. doi:10.15282/ijame.1.2010.7.0007.
  • Segal, L. G. J. M. A., J. J. Creely, A. E. Martin Jr, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29 (10):786–94. doi:10.1177/004051755902901003.
  • Sojoudiasli, H., M.-C. Heuzey, and P. J. Carreau. 2014. Rheological, morphological and mechanical properties of flax fiber polypropylene composites: Influence of compatibilizers. Cellulose 21 (5):3797–812. doi:10.1007/s10570-014-0375-3.
  • Then, Y. Y., N. A. Ibrahim, N. Zainuddin, H. Ariffin, W. M. Z. W. Yunus, and B. W. Chieng. 2014. Surface modifications of oil palm mesocarp fiber by superheated steam, alkali, and superheated steam-alkali for biocomposite applications. BioResources 9 (4):7467–83. doi:10.15376/biores.9.4.7467-7483.
  • Then, Y. Y., N. A. Ibrahim, N. Zainuddin, B. W. Chieng, H. Ariffin, and W. M. Z. W. Yunus. 2015. Influence of alkaline-peroxide treatment of fiber on the mechanical properties of oil palm mesocarp fiber/poly (butylene succinate) biocomposite. BioResources 10 (1):1730–46. doi:10.15376/biores.10.1.1730-1746.
  • Ticoalu, A., T. Aravinthan, and F. Cardona. 2014. A study into the characteristics of gomuti (Arenga pinnata) fibre for usage as natural fibre composites. Journal of Reinforced Plastics and Composites 33 (2):179–92. doi:10.1177/0731684413503191.
  • Tserki, V., N. E. Zafeiropoulos, F. Simon, and C. Panayiotou. 2005. A study of the effect of acetylation and propionylation surface treatments on natural fibres. Composites Part A: Applied Science and Manufacturing 36 (8):1110–18. doi:10.1016/j.compositesa.2005.01.004.
  • Venkateshwaran, N., A. Elaya Perumal, and D. Arunsundaranayagam. 2013. Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Materials & Design 47:151–59. doi:10.1016/j.matdes.2012.12.001.
  • Wambua, P., J. Ivens, and I. Verpoest. 2003. Natural fibres: Can they replace glass in fibre reinforced plastics? Composites Science and Technology 63 (9):1259–64. doi:10.1016/S0266-3538(03)00096-4.
  • Yue, Y., J. Han, G. Han, G. M. Aita, and Q. Wu. 2015. Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: Structural, chemical and thermal properties. Industrial Crops and Products 76:355–63. doi:10.1016/j.indcrop.2015.07.006.
  • Yusoff, R. B., H. Takagi, and A. N. Nakagaito. 2016. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Industrial Crops and Products 94:562–73. doi:10.1016/j.indcrop.2016.09.017.
  • Zhao, X., R. K. Y. Li, and S.-L. Bai. 2014. Mechanical properties of sisal fiber reinforced high density polyethylene composites: Effect of fiber content, interfacial compatibilization, and manufacturing process. Composites Part A: Applied Science and Manufacturing 65:169–74. doi:10.1016/j.compositesa.2014.06.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.