345
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Investigation of Microfibril Angle of Flax Fibers Using X-Ray Diffraction and Scanning Electron Microscopy

, , , , &

References

  • Alix, S., E. Philippe, A. Bessadok, L. Lebrun, C. Morvan, and S. Marais. 2009. Effect of chemical treatments on water sorption and mechanical properties of flax fibres. Bioresource Technology 100:4742–49. doi:10.1016/j.biortech.2009.04.067.
  • Astley, O. M., and A. M. Donald. 2001. A small-angle X-ray scattering study of the effect of hydration on the microstructure of flax fibers. Biomacromolecules 2:672–80. doi:10.1021/bm005643l.
  • Baley, C. 2002. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Composites Part A: Applied Science and Manufacturing 33:939–48. doi:10.1016/S1359-835X(02)00040-4.
  • Baley, C., C. Morvan, and Y. Grohens. 2005. Influence of the absorbed water on the tensile strength of flax fibers. Macromolecular Symposia 222:195–202. doi:10.1002/masy.200550425.
  • Batra, S. K. 1998. Handbook of fiber chemistry - other long vegetable fibers. Menachem Lewin, FL: CRC Press.
  • Bledzki, A. K., and J. Gassan. 1999. Composites reinforced with cellulose based fibres. Progress in Polymer Science 24:221–74. doi:10.1016/S0079-6700(98)00018-5.
  • Bos, H. L., and A. M. Donald. 1999. In situ ESEM study of the deformation of elementary flax fibres. Journal of Materials Science 34:3029–34. doi:10.1023/A:1004650126890.
  • Bourmaud, A., C. Morvanb, A. Bouali, V. Placetd, P. Perrée, and C. Baley. 2013. Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. Industrial Crops and Products 44:343–51. doi:10.1016/j.indcrop.2012.11.031.
  • Cave, I. D. 1997. Theory of X-ray measurement of Micro-fibril angle in wood. Wood Science and Technology 31:143–52. doi:10.1007/s002260050023.
  • Dittenber, D. B., and H. V. S. GangaRao. 2012. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing 43:1419–29. doi:10.1016/j.compositesa.2011.11.019.
  • Donaldson, L. 2008. Micro-fibril angle: Measurement, variation and relationships - a review. IAWA Journal 29:345–86. doi:10.1163/22941932-90000192.
  • Evans, R. 1999. A variance approach to the X-ray diffractometric estimation of microfibril angle in wood. Appita Journal 52:283–94.
  • Fei, B. H. 1995. Study on the determination of microfibril angle and its variation in Paliurus hemsleyanus by X ray diffraction. Journal of Anhui Agriculture University 22:262–65.
  • Goubet, F., T. Bourlard, R. Girault, C. Alexandre, M. C. Vandevelde, and C. Morvan. 1995. Structural features of galactans from flax fibres. Carbohydrate Polymers 27:221–27. doi:10.1016/0144-8617(95)00063-D.
  • Joshi, S., L. Drzal, A. Mohanty, and S. Arora. 2004. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing 35:371–76. doi:10.1016/j.compositesa.2003.09.016.
  • Muller, M., C. Czihak, G. Vogl, P. Fratzl, H. Schober, and C. Riekel. 1998. Direct observation of microfibril arrangement in a single native cellulose fiber by microbeam small-angle X-ray scattering. Macromolecules 31:3953–57. doi:10.1021/ma980004c.
  • Nilsson, T., and P. J. Gustafsson. 2007. Influence of dislocations and plasticity on the tensile behaviour of flax and hemp fibres. Composites Part A: Applied Science and Manufacturing 38:1722–28. doi:10.1016/j.compositesa.2007.01.018.
  • Ramesh, M., K. Palanikumar, and K. H. Reddy. 2017. Plant fibre based bio-composites: Sustainable and renewable green materials. Renewable and Sustainable Energy Reviews 79:558–84. doi:10.1016/j.rser.2017.05.094.
  • Stamboulis, A., C. A. Baillie, and T. Peijs. 2001. Effects of environmental conditions on mechanical and physical properties of flax fibers. Composites Part A: Applied Science and Manufacturing 32:1105–15. doi:10.1016/S1359-835X(01)00032-X.
  • Summerscales, J., N. Dissanayake, A. S. Virk, and W. Hall. 2010. A review of bast fibres and their composites. Part 1- fibres as reinforcements. Composites Part A: Applied Science and Manufacturing 41:1329–35. doi:10.1016/j.compositesa.2010.06.001.
  • Thuault, A., B. Domengès, I. Hervas, and M. Gomina. 2015. Investigation of the internal structure of flax fibre cell walls by transmission electron microscopy. Cellulose 22:3521–30. doi:10.1007/s10570-015-0744-6.
  • Wang, H. H., J. G. Drummont, S. M. Reath, K. Hunt, and P. A. Watson. 2001. An improved fibril angle measurement method for wood fibres. Wood Science and Technology 34:493–503. doi:10.1007/s002260000068.
  • Wong, K. K., X. M. Tao, C. W. M. Yuen, and K. W. Yeung. 1997. Modification of bast fibres. Textile Asia, 28:46–49.
  • Yamamoto, H., T. Okuyama, and M. Yoshida. 1993. Method of determining the mean microfibril angle of wood over a wide range by the improved Cave’s method. Mokuzai Gakkaishi 39 (28):375–81.
  • Yan, L., N. Chouw, and K. Jayaraman. 2014. Flax fibre and its composites - a review. Composites Part B: Engineering 56:296–317. doi:10.1016/j.compositesb.2013.08.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.