348
Views
18
CrossRef citations to date
0
Altmetric
Research Article

African Teff Straw as a Potential Reinforcement in Polymer Composites for Light-Weight Applications: Mechanical, Thermal, Physical, and Chemical Characterization before and after Alkali Treatment

&

References

  • Arthanarieswaran, V. P., A. Kumaravel, and M. Kathirselvam. 2016. Mechanical and thermal properties of acacia leucophloea fiber/epoxy composites : influence of fiber loading and alkali treatment. International Journal of Polymer Analysis and Characterization 21 (7):571–83. doi:10.1080/1023666X.2016.1183279.
  • Arthanarieswaran, V. P., A. Kumaravel, and S. S. Saravanakumar. 2015. Physico-chemical properties of alkali-treated acacia leucophloea fibers. International Journal of Polymer Analysis and Characterization 8:704–13. doi:10.1080/1023666X.2015.1081133.
  • Bageru, A. B., and V. Srivastava. 2017. Preparation and characterisation of biosilica from Teff (Eragrostis Tef) straw by thermal method. Materials Letters 206:13–17. doi:10.1016/j.matlet.2017.06.100.
  • Balaji, A., . N., and K. J. Nagarajan. 2017. Characterization of alkali treated and untreated new cellulosic fiber from saharan aloe vera cactus leaves. Carbohydrate Polymers 174:200–08. doi:10.1016/j.carbpol.2017.06.065.
  • Balasundar, P., P. Narayanasamy, P. Senthamaraikannan, S. Senthil, and T. Ramkumar. 2018. Extraction and characterization of new natural cellulosic Chloris Barbata fiber. Journal of Natural Fibers 15 (3):436–44. doi:10.1080/15440478.2017.1349015.
  • Chen, C., G. Chen, X. Li, H. Guo, and G. Wang. 2017. The influence of chemical treatment on the mechanical properties of Windmill palm fiber. Cellulose (London, England) 24:1611–20. doi:10.1007/s10570-017-1205-1.
  • Chufo, A., H. Yuan, D. Zou, Y. Pang, and X. Li. 2015. Biomethane production and physicochemical characterization of anaerobically digested Teff (Eragrostis Tef) straw pretreated by sodium hydroxide. Bioresource Technology 181:214–19. doi:10.1016/j.biortech.2015.01.054.
  • Faruk, O., A. K. Bledzki, H.-P. Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science 37:1552:15596. doi:10.1016/j.progpolymsci.2012.04.003.
  • Fonseca, A. S., F. A. Mori, G. H. D. Tonoli, H. S. Junior, D. L. Ferrari, and I. P. A. Miranda. 2013. Properties of an Amazonian vegetable fiber as a potential reinforcing material. Industrial Crops & Products 47:43–50. doi:10.1016/j.indcrop.2013.02.033.
  • Indran, S., R. E. Raj, and V. S. Sreenivasan. 2014. Characterization of new natural cellulosic fiber from cissus quadrangularis root. Carbohydrate Polymers 110:423–29. doi:10.1016/j.carbpol.2014.04.051.
  • Jiang, Y., M. Lawrence, M. P. Ansell, and A. Hussain. 2018. Cell wall microstructure,pore size distribution and absolute density of hemp shiv. Royal Society Open Science 5:171945. doi:10.1098/rsos.171945.
  • Kilink, A., S. Kökta, Y. Seki, M. Atagür, R. Dalm, Ü. Halis, A. Aydin, and M. Özgür Seydibeyo. 2018. Extraction and investigation of lightweight and porous natural fiber from Conium Maculatum as a potential reinforcement for composite materials in transportation. Composites Part B 140:1–8. doi:10.1016/j.compositesb.2017.11.059.
  • Koronis, G., A. Silva, and Fontul, M. 2013. Green composites : a review of adequate materials for automotive applications. Composites Part B 44:120–27. doi:10.1016/j.compositesb.2012.07.004.
  • Li, X., L. G. Tabil, and S. Panigrahi. 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites : a review. Journal of Polymers and the Environment 15:25–33. doi:10.1007/s10924-006-0042-3.
  • Luiz, H., O. Jr, M. Poletto, and A. Jose. 2014. Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose (London, England) (21):177–88. doi:10.1007/s10570-013-0094-1.
  • Maache, M., A. Bezazi, S. Amroune, F. Scarpa, and A. Dufresne. 2017. Characterization of a novel natural cellulosic fiber from Juncus Effusus. Carbohydrate Polymers 171:163–72. doi:10.1016/j.carbpol.2017.04.096.
  • Manimaran, P., P. Senthamaraikannan, M. R. Sanjay, and M. K. Marichelvam. 2018. Study on characterization of Furcraea Foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydrate Polymers 181:650–58. doi:10.1016/j.carbpol.2017.11.099.
  • Mittal, V., R. Saini, and S. Sinha. 2016. Natural fiber-mediated epoxy composites -a review. Composites Part B 99:425–35. doi:10.1016/j.compositesb.2016.06.051.
  • Mittal, V., and S. Sinha. 2015. Effect of chemical treatment on the mechanical and water absorption properties of Bagasse fiber-reinforced epoxy composites. Journal of Polymer Engineering 35 (6):545–50. doi:10.1515/polyeng-2014-0270.
  • Monteiro, S. N., F. M. Margem, F. D. O. Braga, F. S. Da Luz, and N. T. Simonassi. 2017. Weibull analysis of the tensile strength dependence with fiber diameter of giant bamboo. Journal of Materials Research and Technology 6 (4):317–22. doi:10.1016/j.jmrt.2017.07.001.
  • Motaung, T. E., and R. D. Anandjiwala. 2015. Effect of alkali and acid treatment on thermal degradation kinetics of sugar cane bagasse. Industrial Crops & Products 74:472–77. doi:10.1016/j.indcrop.2015.05.062.
  • Mwaikambo, L. Y., and M. P. Ansell. 2006. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. hemp fibres. Journal of Materials Science 41 (8):2483–96. doi:10.1007/s10853-006-5098-x.
  • Ornaghi, H. L., Jr., M. Poletto, A. J. Zattera, and S. C. Amico. 2014. Correlation of the thermal stability and the decomposition kinetics of six different vegetable fibers. Cellulose (London, England) 21:177–88. doi:10.1007/s10570-013-0094-1.
  • Pouriman, M., A. R. Caparanga, and Ebrahimi, A. 2018. Characterization of untreated and alkaline- treated salago Fibers (Genus Wikstroemia Spp.). Journal of Natural Fibers 15 (2):296–307. doi:10.1080/15440478.2017.1329105.
  • Prajer, M., and M. P. Ansell. 2012. Observation of transcrystalline growth of PLA crystals on sisal fibre bundles and the effect of crystal structure on interfacial shear strength. Composite Interfaces 19 (1):39–50. doi:10.1080/09276440.2012.688398.
  • Prajer, M., and M. P. Ansell. 2014. Bio-composites for structural applications: Poly-L-lactide reinforced with long sisal fiber bundles. Journal of Applied Polymer Science 131:1–13. doi:10.1002/app.40999.
  • Rajeshkumar, G., V. Hariharan, and T. Scalici. 2017. Effect of NaOH treatment on properties of Phoenix Sp. fiber. Journal of Natural Fibers 13 (6):702–13. doi:10.1080/15440478.2015.1130005.
  • Ramanaiah, K., A. V. R. Prasad, and K. H. C. Reddy. 2011. Thermal and mechanical properties of Sansevieria Green fiber reinforcement. International Journal of Polymer Analysis and Characterisation 16:602–08. doi:10.1080/1023666X.2011.622358.
  • Ramasamy, R., K. O. Reddy, and A. V. Rajulu. 2018. Extraction and characterization of Calotropis Gigantea Bast fibers as novel reinforcement for composites materials. Journal of Natural Fibers 15 (4):527–38. doi:10.1080/15440478.2017.1349019.
  • Saba, N., M. Jawaid, O. Y. Alothman, M. T. Paridah, and A. Hassan. 2016. Recent advances in Epoxy resin, natural fiber-reinforced epoxy composites and their applications. Journal of Reinforced Plastics & Composites 35 (6):447–70. doi:10.1177/0731684415618459.
  • Sari, N. H., I. N. G. Wardana, Y. S. Irawan, E. Siswanto, and N. Herlina. 2018. Characterization of the chemical, physical, and mechanical properties of NaOH-treated natural cellulosic fibers from Corn husks. Journal of Natural Fibers 15 (4):545–58. doi:10.1080/15440478.2017.1349707.
  • Sbirrazzuoli, N., L. Vincent, A. Mija, and N. Guigo. 2009. Integral, differential and advanced isoconversional methods. Complex mechanisms and isothermal predicted conversion-time curves. Chemometrics and Intelligent Laborary Systems 96:219–26. doi:10.1016/j.chemolab.2009.02.002.
  • Senthamaraikannan, P., and M. Kathiresan. 2018. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia Grandis. L. Carbohydrate Polymers 186:332–43. doi:10.1016/j.carbpol.2018.01.072.
  • Shanmugasundaram, N., I. Rajendran, and T. Ramkumar. 2018. Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydrate Polymers 195:566–75. doi:10.1016/j.carbpol.2018.04.127.
  • Venkatesh, M., P. Ravi, and S. P. Tewari. 2013. Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn-Wall-Ozawa method. The Journal of Physical Chemistry. A 117:10162–69. doi:10.1021/jp311003d.
  • Wassie, A. B., and V. C. Srivastava. 2016a. (a) Chemical treatment of teff Straw by sodium hydroxide, phosphoric acid and zinc chloride : adsorptive removal of chromium. International Journal of Environmental Science and Technology 13 (10):2415–26. doi:10.1007/s13762-016-1080-6.
  • Wassie, A. B., and V. C. Srivastava. 2016b. (b) Teff straw characterization and utilization for Chromium removal from wastewater : kinetics, isotherm and thermodynamic modelling. Journal of Environmental Chemical Engineering 4:1117–25. doi:10.1016/j.jece.2016.01.019.
  • Yao, F. I., Q. Wu, Y. Lei, W. Guo, and Y. Xu. 2008. Thermal decomposition kinetics of natural fibers : activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability 93:90–98. doi:10.1016/j.polymdegradstab.2007.10.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.