266
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Production of Micro- and Nanofibrillated Cellulose through an Aqueous Counter Collision System Followed by Ultrasound: Effect of Mechanical Pretreatments

ORCID Icon, , , , &

References

  • Avolio, R., A. I. Bonadies, D. Capitani, M. E. Errico, G. Gentile, and M. Avella. 2012. A multitechnique approach to assess the effect of ball milling on cellulose. Carbohydrate Polymers 87 (1):265–73. doi:10.1016/j.carbpol.2011.07.047.
  • Chen, W. S., H. P. Yu, Y. X. Liu, P. Chen, M. X. Zhang, and Y. F. Hai. 2011. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers 83 (4):1804–11. doi:10.1016/j.carbpol.2010.10.040.
  • Csiszár, E., and E. Fekete. 2011. Microstructure and surface properties of fibrous and ground cellulosic substrates. Langmuir 27 (13):8444–50. doi:10.1021/la201039a.
  • dos Santos, F. A., G. C. V. Iulianelli, and M. I. B. Tavares. 2016. The use of cellulose nanofillers in obtaining polymer nanocomposites: Properties, processing, and applications. Materials Sciences and Applications 7:257–94. doi:10.4236/msa.2016.75026.
  • Fall, A. B., A. Burman, and L. Wågberg. 2014. Cellulosic nanofibrils from eucalyptus, acacia and pine fibers. Nordic Pulp & Paper Research Journal 29 (1):176–84. doi:10.3183/NPPRJ-2014-29-01-p176-184.
  • Hubbe, M. A., P. Tayeb, M. Joyce, P. Tyagi, M. Kehoe, K. Dimic-Misic, and L. Pal. 2017. Rheology of nanocellulose-rich aqueous suspensions: A review. Bioresources 12 (4):9556–661.
  • Jiang, F., T. Kondo, and Y. Hsieh. 2016. Rice straw cellulose nanofibrils via aqueous counter collision and differential centrifugation and their self-assembled structures. ACS Sustainable Chemistry Engineering 4 (3):1697–706. doi:10.1021/acssuschemeng.5b01653.
  • Kang, T., and H. Paulapuro. 2006. Effect of external fibrillation on paper strength. Pulp & Paper Canada 107 (7/8):51–54.
  • Kondo, T., R. Kose, H. Naito, and W. Kasai. 2014. Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. Carbohydrate Polymers 112:284–90. doi:10.1016/j.carbpol.2014.05.064.
  • Kondo, T., M. Morita, K. Hayakawa, and Y. Onda 2008. U.S. Patent 7357339 B2. Washington, DC: U.S. Patent and Trademark Office.
  • Nair, S. S., J. Y. Zhu, Y. L. Deng, and A. J. Ragauskas. 2014. Characterization of cellulose nanofibrillation by micro grinding. Journal of Nanoparticle Research 16 (4):2349. doi:10.1007/s11051-014-2349-7.
  • Park, S., J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson. 2010. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3 (10). doi: 10.1186/1754-6834-3-10.
  • Qing, Y., R. Sabo, J. Y. Zhu, U. Agarwal, Z. Cai, and Y. Q. Wu. 2013. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydrate Polymers 97 (1):226–34. doi:10.1016/j.carbpol.2013.04.086.
  • Spence, K. L., R. A. Venditti, Y. Habibi, O. J. Rojas, and J. J. Pawlak. 2010. The effect of chemical composition on microfibrillar cellulose films from wood pulps: Mechanical processing and physical properties. Bioresource Technology 101 (15):5961–68. doi:10.1016/j.biortech.2010.02.104.
  • Spence, K. L., R. A. Venditti, O. J. Rojas, Y. Habibi, and J. J. Pawlak. 2011. A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18 (4):1097–111. doi:10.1007/s10570-011-9533-z.
  • Stelte, W., and A. R. Sanadi. 2009. Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Industrial Engineering Chemistry Research 48 (24):11211–19. doi:10.1021/ie9011672.
  • Taheri, H., and P. Samyn. 2016. Effect of homogenization (microfluidization) process parameters in mechanical production of micro- and nanofibrillated cellulose on its rheological and morphological properties. Cellulose 23 (2):1221–38. doi:10.1007/s10570-016-0866-5.
  • TAPPI Test Methods T 240 om-93. 1993. Consistency (concentration) of pulp suspensions.
  • Tonoli, G. H. D., E. M. Teixeira, A. C. Corrêa, J. M. Marconcini, L. A. Caixeta, M. A. Pereira-da-Silva, and L. H. C. Mattoso. 2012. Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties. Carbohydrate Polymers 89 (1):80–88. doi:10.1016/j.carbpol.2012.02.052.
  • Tsoumis, G. 1991. Science and technology of wood: Structure, properties, utilization. New York, USA: Van Nostrand Reinhold.
  • Tsuboi, K., S. Yokota, and T. Kondo. 2014. Difference between bamboo- and wood derived cellulose nanofibers prepared by the aqueous counter collision method. Nordic Pulp & Paper Research Journal 29 (1):69–76. doi:10.3183/NPPRJ-2014-29-01-p069-076.
  • Winkworth-Smith, C. G. 2015. Cellulose composites structures – By design. PhD diss, University of Nottingham.
  • Zhang, L. Y., T. Tsuzuki, and X. G. Wang. 2015. Preparation of cellulose nanofiber from softwood pulp by ball milling. Cellulose 22 (3):1729–41. doi:10.1007/s10570-015-0582-6.
  • Zhao, J. Q., W. Zhang, X. D. Zhang, X. X. Zhang, C. H. Lu, and Y. L. Deng. 2013. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization. Carbohydrate Polymers 97 (2):695–702. doi:10.1016/j.carbpol.2013.05.050.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.