400
Views
28
CrossRef citations to date
0
Altmetric
Research Article

Cellulose Nanowhiskers Extracted from Tempo-Oxidized Curaua Fibers

ORCID Icon, , , ORCID Icon & ORCID Icon

References

  • Campos, A., A. C. Correa, D. Canella, E. M. Teixeira, J. M. Marconcini, A. Dufresne, L. H. C. Mattoso, P. Cassland, and A. R. Sanandi. 2013. Obtaining nanofibers from curaua and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20:1491–500. doi:10.1007/s10570-013-9909-3.
  • Campos, A., N. A. R. Sena, V. B. Rodrigues, B. R. Luchesi, F. K. V. Moreira, A. C. Correa, L. H. C. Mattoso, and J. M. Marconcini. 2017. Bionanocomposites produced from cassava starch and oil palm mesocarp cellulose nanowhiskers. Carbohydrate polymers 175:330–36. doi:10.1016/j.carbpol.2017.07.080.
  • Cao, X., B. Ding, J. Yu, and S. Al-Deyab. 2012. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydrate polymers 90:1075–80. doi:10.1016/j.carbpol.2012.06.046.
  • Castro, D. O., F. Passador, A. F. Ruvolo, and E. Frollini. 2017. Use of Castor and canola oils in “BioPolyethylene” curauá fiber composites. Composites: Part A 25:22–30. doi:10.1016/j.compositesa.2016.12.024.
  • Cherian, B. M., A. L. Leão, S. F. De Souza, S. Thomas, L. A. Pothan, and M. Kottaisamy. 2010. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate polymers 81:720–25. doi:10.1016/j.carbpol.2010.03.046.
  • Ciolacu, D., and V. Popa. 2010. Cellulose allomorphs: Structure, accessibility and reactivity, 43–45. United States: Nova Science Publishers Inc.
  • Corrêa, A. C., E. M. Teixeira, and L. A. Pessan. 2010. Cellulose nanofibers from curaua fibres. Cellulose 17:1183–92. doi:10.1007/s10570-010-9453-3.
  • Espinach, F. X., S. Boufi, M. D. Aguilar, F. Julián, F. Mutjé, and J. A. Méndez. 2018. Composites from poly(lactic acid) and bleached chemical fibres: Thermal properties. Composites Part B: Engineering 134:169–76. doi:10.1016/j.compositesb.2017.09.055.
  • Fu, L., J. Zhang, and G. Yang. 2013. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydrate polymers 92:1432–42. doi:10.1016/j.carbpol.2012.10.071.
  • Fukuzumi, H., T. Saito, Y. Okita, and A. Isogai. 2010. Thermal stabilization of TEMPO-oxidized cellulose. Polymer degradation and stability 133:605–12. doi:10.1016/j.polymdegradstab.2010.06.015.
  • Gomes, A., T. Matuso, K. Goda, and J. Ohgi. 2007. Development and effect of alkali treatament on tensile properties of curaua fiber green composite. Composites Part A 38:1811–20. doi:10.1016/j.compositesa.2007.04.010.
  • Hoareau, W., W.G. Trindade, B. Siegmund, A. Castellan, and E. Frollini. 2005. Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: characterization and stability. Polymer Degradation and Stability 86:567-576. doi: 10.1016/j.polymdegradstab.2004.07.005.
  • Huang, C. F., J. K. Chen, T. Y. Tsai, Y. AnHsieh, and K. Y. Lin. 2015. Dual-functionalized cellulose nanofibrils prepared through TEMPO mediated oxidation and surface-initiated ATRP. Polymer 72:395–405. doi:10.1016/j.dib.2015.03.003.
  • Hubbell, C. A., and A. J. Ragauskas. 2010. Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresource technology 101:7410–15. doi:10.1016/j.biortech.2010.04.029.
  • Ifuku, S., M. Tsuji, M. Morimoto, H. Saimoto, and H. Yano. 2011. Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial celulose nanofibers. Biomacromolecules 10:2714–17. doi:10.1021/bm9006979.
  • Isogai, A., and R. H. Atalla. 1998. Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–19. doi:10.1023/A:1009272632367.
  • Isogai, A., T. Saito, and H. Fukuzumi. 2011. TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. doi:10.1039/c0nr00583e.
  • Karande, V. S., A. K. Bharimalla, G. B. Hadge, S. T. Mhaske, and N. Vigneshwaran. 2011. Nanofibrillation of Cotton Fibers by Disc Refiner and Its Characterization. Fibers and Polymers 12 (3):399–404. doi:10.1007/s12221-011-0399-3.
  • Kargarzadeh, H., R. M. Sheltami, I. Ahmad, I. Abdullah, and A. Dufresne. 2015. Cellulose nanocrystal: A promising toughening agent for unsaturated polyester nanocomposite. Polymer 56:346–57. doi:10.1016/j.polymer.2014.11.054.
  • Klemm, D., F. Kramer, S. Mortiz, T. Lindstrom, M. Ankerfors, D. Gray, and A. Dorris. 2011. Nanocelluloses: A New Family of Nature-Based Materials. Angewandte Chemie International Edition 50:5438–66. doi:10.1002/anie.201001273.
  • Lavoine, N., I. Desloges, A. Dufresne, and J. Bras. 2012. Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydrate polymers 90:735–764. doi: 10.1016/j.carbpol.2012.05.026.
  • Lazzari, L. K., V. B. Zampieri, M. Zanini, A. J. Zattera, and C. Balasso. 2017. Sorption capacity of hydrophobic cellulose cryogels silanized by two different methods. Cellulose 24 (3):1–11. doi:10.1007/s10570-017-1349-z.
  • Liu, W., B. Wang, Q. Hou, W. Chen, and M. Wu. 2016. Effects of fibrillation on the wood fibers enzymatic hydrolysis enhanced by mechanical refining. Bioresources Technology 206:99–103. doi:10.1016/j.biortech.2016.01.074.
  • Moran, J., V. A. Alvarez, V. P. Cyras, and A. Vázquez. 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15 (1):149–59. doi:10.1007/s10570-007-9145-9.
  • Morelli, C. L., J. M. Marconcini, F. V. Pereira, R. E. S. Bretas, and M. C. Branciforti. 2012. Extraction and characterization of cellulose nanowhiskers from balsa wood. Macromolecular symposia 319:191–95. doi:10.1002/masy.201100158.
  • Peng, Y., D. J. Gardner, Y. Han, A. Kiziltas, Z. Cai, and M. A. Tshabalala. 2013. Influence of drying method on the material properties of nanocellulose I: Thermostability and crystallinity. Cellulose 20:2379–92. doi:10.1007/s10570-013-0019-z.
  • Poletto, M., and A. J. Zattera. 2013. Materials produced from plant biomass. Part III: Degradation kinetics and hydrogen bonding in lignin. Materials Research 16 (5):1065–70. doi:10.1590/S1516-14392013005000112.
  • Popescu, M. C., C. M. Poposcu, G. Lisa, and Y. Sakata. 2011. Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. Journal of molecular structure 988:65–72. doi:10.1016/j.molstruc.2010.12.004.
  • Quintana, E., M. B. Roncero, T. Vidal, and C. Valls. 2017. Cellulose oxidation by Laccase - TEMPO treatments. Carbohydrate polymers 157:1499–1495. doi:10.1016/j.carbpol.2016.11.033.
  • Rayung, M., N. A. Ibrahim, N. Zainuddin, W. Z. Saad, N. I. A. Razak, and B. W. Chieng. 2014. The effect of fiber bleaching treatment on the properties of poly(lactic acid)/oil palm empty fruit bunch fiber composites. International Journal of Research 346:76–85. doi:10.3390/ijms150814728.
  • Rodionova, G., T. Saito, M. Lenes, O. Eriksen, O. Gregersen, R. Kuramae, and A. Isogai. 2013. TEMPO-mediated oxidation of Norway spruce and eucalyptus pulps: Preparation and characterization of nanofibers and nanofiber dispersions. Journal of Polymers and the Environment 21:207–14. doi:10.1007/s10924-012-0483-9.
  • Rohaizu, R., and W. D. Wannrosli. 2017. Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline celulose. Ultrasonics sonochemistry 34:631–39. doi:10.1016/j.ultsonch.2016.06.040.
  • Saito, T., Y. Nishiyama, J. L. Putaux, M. Vignon, and A. Isogai. 2006. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7 (6):1687–91. doi:10.1021/bm060154s.
  • Santana, J. S., C. C. Pola, C. G. Otoni, N. F. F. Soares, G. P. Camilloto, and R. S. Cruz. 2017. Cassava starch-based nanocomposites reinforced with cellulose 471 nanofibers extracted from sisal. Journal of applied polymer science 134 (12):1–9. doi:10.1002/app.44637.
  • Soni, B., E. B. Hassan, and B. Mahmoud. 2015. Chemical isolation and characterization of different celulose nanofibers from cotton stalks. Carbohydrate polymers 134:581–89. doi:10.1016/j.carbpol.2015.08.031.
  • Sun, S. N., S. L. Sun, X. F. Cao, and R. C. Sun. 2016. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource technology 199:49–58. doi:10.1016/j.biortech.2015.08.061.
  • Wang, Q. Q., J. Y. Zhu, R. Gleisner, T. A. Kuster, U. Baxa, and S. E. McNail. 2012. Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19 (5):1631–43. doi:10.1007/s10570-012-9745-x.
  • Zanini, M., A. Lavoratti, L. K. Lazzari, D. Galiotto, M. Pagnocelli, C. Baldasso, and A. J. Zattera. 2017. Producing aerogels from silanized cellulose nanofiber suspension. Cellulose 24:769–79. doi:10.1007/s10570-016-1142-4.
  • Zimmermann, M. V. G., T. C. Turella, R. M. C. Santana, and A. Zattera. 2014. The influence of wood flour particle size and content on the rheological, physical, mechanical and morphological properties of EVA/wood cellular composites. Materials and Design 57:660–66. doi:10.1016/j.matdes.2014.01.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.