191
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Study of the Effects of the Addition of Coffee Grounds and Sugarcane Fibers on Thermal and Mechanical Properties of Briquettes

, , ORCID Icon & ORCID Icon

References

  • Abdeltaif, S., K. SirElkhatim, and A. Hassan. 2018. Estimation of phenolic and flavonoid compounds and antioxidant activity of spent coffee and black tea (processing) waste for potential recovery and reuse in Sudan. Recycling 3 (2):27. doi:10.3390/recycling3020027.
  • Adnan, A., D. von Horsten, E. Pawelzik, and D. Morlein. 2017. Rapid prediction of moisture content in intact green coffee beans using near infrared spectroscopy. Foods 6:38. doi:10.3390/foods6050038.
  • Ahangari, B., and J. Sargolzaei. 2012. Extraction of lipids from spent coffee grounds using organic solvents and supercritical carbon dioxide. Journal of Food Processing and Preservation. doi:10.1111/j.1745-4549.2012.00757.x.
  • Ahtikoski, A., J. Heikkilä, V. Alenius, and M. Siren. 2008. economic viability of utilizing biomass energy from young stands-the case of Finland. Biomass and Bioenergy 32 (11):988–96. doi:10.1016/j.biombioe.2008.01.022.
  • Antwi-Boasiako, C., and B. B. Acheampong. 2016. strength properties and calorific values of sawdust-briquettes as wood-residue energy generation source from tropical hardwoods of different densities. Biomass and Bioenergy 85:144–52. Elsevier Ltd. doi:10.1016/j.biombioe.2015.12.006.
  • Avelar, N. V., A. A. P. Rezende, A. D. C. O. Carneiro, and C. M. Silva. 2016. Evaluation of briquettes made from textile industry solid waste. Renewable Energy 91:417–24. doi:10.1016/j.renene.2016.01.075.
  • Ballesteros, L. F., J. A. Teixeira, and S. I. Mussatto. 2014. Chemical, functional, and structural properties of spent coffee grounds and coffee Silverskin. Food and Bioprocess Technology 7 (12):3493–503. doi:10.1007/s11947-014-1349-z.
  • Cabral, M. S., and V. A. D. S. Moris. 2010. “Reaproveitamento Da Borra de Café Como Medida de Minimização Da Geração de Resíduos.” XXX Encontro Nacional de Engenharia de Produção.
  • Cardozo, E., C. Erlich, L. Alejo, and T. H. Fransson. 2014. Combustion of agricultural residues : an experimental study for small-scale applications. Fuel 115:778–87. Elsevier Ltd. doi:10.1016/j.fuel.2013.07.054.
  • Ceylan, S., and D. Kazan. 2015. Pyrolysis kinetics and thermal characteristics of microalgae nannochloropsis Oculata and Tetraselmis Sp. Bioresource Technology 187:1–5. Elsevier Ltd. doi:10.1016/j.biortech.2015.03.081.
  • Demirbaş, A. 2001. Relationships between lignin contents and heating values of biomass. Energy Conversion and Management 42 (2):183–88. doi:10.1016/S0196-8904(00)00050-9.
  • Dweck, J., L. C. Morais, J. C. Meneses, and P. M. Büchler. 2006. Thermal analysis of municipal sludge waste combustion. Materials Science Forum 530–531:740–46. doi:10.4028/www.scientific.net/MSF.530-531.740.
  • Esquivel, P., and V. M. Jiménez. 2012. Functional Properties of Coffee and Coffee By-Products. Food Research International 46(2):488–95. Elsevier Ltd. doi:10.1016/j.foodres.2011.05.028.
  • Gonçalves, J. E., M. M. P. Sartori, and A. L. Leão. 2009. Energy from briquettes produced from remains of urban solid residues and wood of eucalyptus grandis. Revista Brasileira de Engenharia Agrícola e Ambiental 13 (5):657–61. doi:10.1590/S1415-43662009000500021.
  • Grover, P. D., and S. K. Mishra. 1996. “Biomass briquetting: technology and practices.” Food and Agriculture Organization of The United Nations, no. 46: 48.
  • Guilhermino, A., G. Lourinho, P. Brito, and N. Almeida. 2018. Assessment of the use of forest biomass residues for bioenergy in Alto Alentejo, Portugal: logistics, economic and financial perspectives. Waste and Biomass Valorization 9(5):739–53. Springer Netherlands. doi:10.1007/s12649-017-9830-3.
  • Guo, F., and Z. Zhong. 2018. Simulation and analysis of coal and biomass pellet in fluidized bed with hot air injection. Waste and Biomass Valorization Springer Netherlands. doi:10.1007/s12649-018-0309-7.
  • Jenkins, R. W., N. E. Stageman, C. M. Fortune, and C. J. Chuck. 2014. Effect of the type of bean, processing, and geographical location on the biodiesel produced from waste coffee grounds. Energy & Fuels 28:1166–74. doi:10.1021/ef4022976.
  • Kao, L. S., and C. E. Green. 2008. Analysis of variance : is there a difference in means and what does it mean ? Journal of Surgical Research 170:158–70. doi:10.1016/j.jss.2007.02.053.
  • Lela, B., M. Barišic, and S. Nizetic. 2016. Cardboard/sawdust briquettes as biomass fuel : physical – mechanical and thermal characteristics. Waste Management 47:236–45. doi:10.1016/j.wasman.2015.10.035.
  • Li, X., V. Strezov, and T. Kan. 2014. Energy recovery potential analysis of spent coffee grounds pyrolysis products. Journal of Analytical and Applied Pyrolysis 110:79–87. Elsevier B.V. doi:10.1016/j.jaap.2014.08.012.
  • Libra, J. A., K. S. Ro, C. Kammann, F. Axel, N. D. Berge, Y. Neubauer, C. Maria-Magdalena Titirici, Fühner, O. Bens, J. Kern, and Karl-Heinz Emmeriche.2011. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2(1): 71–106. doi: 10.4155/bfs.10.81.
  • Maia, A., A. Domingos, and L. C. De Morais. 2016. Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresource Technology 204:157–63. Elsevier Ltd. doi:10.1016/j.biortech.2015.12.055.
  • Morais, L. C., A. A. D. Maia, M. E. G. Guandique, and A. H. Rosa. 2017. Pyrolysis and combustion of sugarcane bagasse. Journal of Thermal Analysis and Calorimetry (March). Springer Netherlands. doi:10.1007/s10973-017-6329-x.
  • Muazu, R. I., and J. A. Stegemann. 2015. Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs. Fuel Processing Technology 133:137–45. Elsevier B.V.. doi:10.1016/j.fuproc.2015.01.022.
  • Muazu, R. I., and J. A. Stegemann. 2017. Biosolids and microalgae as alternative binders for biomass fuel briquetting. Fuel 194:339–47. Elsevier Ltd. doi:10.1016/j.fuel.2017.01.019.
  • Nanda, S., P. Mohanty, K. K. Pant, S. Naik, J. A. Kozinski, and A. K. Dalai. 2013. Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Research 6:663–77. doi:10.1007/s12155-012-9281-4.
  • Neves, T. A., T. de Paula Protásio, A. M. Couto, P. F. Trugilho, V. O. Silva, and C. M. M. Vieira. 2011. Avaliação de Clones de Eucalyptus Em Diferentes Locais Visando à Produção de Carvão Vegetal. Brazilian Journal of Foresty Research 31 (68):319–30. doi:10.4336/2011.pfb.31.68.319.
  • Nunes, L. J. R., J. C. O. Matias, and J. P. S. Catalão. 2014. Mixed biomass pellets for thermal energy production : a review of combustion models. Applied Energy 127:135–40. Elsevier Ltd. doi:10.1016/j.apenergy.2014.04.042.
  • Onukak, I., I. Mohammed-Dabo, A. Ameh, S. Okoduwa, and O. Fasanya. 2017. Production and characterization of biomass briquettes from tannery solid waste. Recycling 2 (4):17. doi:10.3390/recycling2040017.
  • Pujol, D., C. Liu, J. Gominho, M. À. Olivella, N. Fiol, I. Villaescusa, and H. Pereira. 2013. The chemical composition of exhausted coffee waste. Industrial Crops and Products 50:423–29. Elsevier. doi:10.1016/j.indcrop.2013.07.056.
  • Ramasamy, R., K. Obi Reddy, and A. Varada Rajulu. 2018. Extraction and characterization of calotropis gigantea bast fibers as novel reinforcement for composites materials. Journal of Natural Fibers 15(4):527–38. Taylor & Francis. doi:10.1080/15440478.2017.1349019.
  • Reis, K. C., L. Pereira, I. C. N. A. Melo, J. M. Marconcini, P. F. Trugilho, and G. H. D. Tonoli. 2015. Particles of coffee wastes as reinforcement in polyhydroxybutyrate (PHB) based composites. Materials Research 18 (3):546–52. doi:10.1590/1516-1439.318114.
  • Sakhare, V. V., and R. V. Ralegaonkar. 2016. Use of bio-briquette ash for the development of bricks. Journal of Cleaner Production 112:684–89. Elsevier Ltd. doi:10.1016/j.jclepro.2015.07.088.
  • Shabani, N., S. Akhtari, and T. Sowlati. 2013. Value chain optimization of forest biomass for bioenergy production: a review. Renewable and Sustainable Energy Reviews 23:299–311. Elsevier. doi:10.1016/j.rser.2013.03.005.
  • Sharma, K., E. Y. Ko, A. D. Assefa, H. Soyoung, S. H. Nile, E. T. Lee, and S. W. Park. 2015. Temperature-dependent studies on the total phenolics, flavonoids, antioxidant activities, and sugar content in six onion varieties. Journal of Food and Drug Analysis 23(2):243–52. Elsevier Ltd. doi:10.1016/j.jfda.2014.10.005.
  • Shyamalee, D., A. D. U. S. Amarasinghe, and N. S. Senanayaka. 2015. Evaluation of different binding materials in forming biomass briquettes with saw dust. International Journal of Scientific and Research Publications 5:3.
  • Soares, L., V. De Souza, A. D. S. Moris, F. M. Yamaji, and J. M. F. D. Paiva. 2015. Utilização de Resíduos de Borra de Café e Serragem Na Moldagem de Briquetes e Avaliação de Propriedades. Revista Matéria 20 (2):550–60. doi:10.1590/S1517-707620150002.0055.
  • Srivastava, N. S. L., S. L. Narnaware, J. P. Makwana, S. N. Singh, and S. Vahora. 2014. Investigating the energy use of vegetable market waste by briquetting. Renewable Energy 68:270–75. Elsevier Ltd. doi:10.1016/j.renene.2014.01.047.
  • Stasiak, M., M. Molenda, M. Banda, and E. Gondek. 2015. Mechanical properties of sawdust and woodchips Q. Fuel 159:900–08. doi:10.1016/j.fuel.2015.07.044.
  • Stolarski, M. J., S. Szczukowski, J. Tworkowski, M. Krzyzaniak, P. Gulczynski, and M. Mleczek. 2013. Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renewable Energy 57:20–26. doi:10.1016/j.renene.2013.01.005.
  • Tchapda, A. H., and S. V. Pisupati. 2014. A review of thermal co-conversion of coal and biomass/waste. Energies 7:1098–148. doi:10.3390/en7031098.
  • Vardon, D. R., B. R. Moser, W. Zheng, R. L. Katie Witkin, T. J. Evangelista, K. R. Strathmann, and B. K. Sharma. 2013. Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar. ACS Sustainable Chemistry and Engineering 1 (10):1286–94. doi:10.1021/sc400145w.
  • Vassilev, S. V., C. G. Vassileva, and V. S. Vassilev. 2015. Advantages and disadvantages of composition and properties of biomass in comparison with coal : an overview. Fuel 158:330–50. Elsevier Ltd. doi:10.1016/j.fuel.2015.05.050.
  • Zhao, P., Y. Shen, G. Shifu, Z. Chen, and K. Yoshikawa. 2014. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Applied Energy 131:345–67. Elsevier Ltd. doi:10.1016/j.apenergy.2014.06.038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.