228
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Removal of Three Fluoroquinolone Antibiotics by NaClO2-modified Biosorbent from Fruit Fiber of C. Procera

, , , & ORCID Icon

References

  • Abbott, T. P., D. M. Palmer, S. H. Gordon, and M. O. Bagby. 1988. Solid state analysis of plant polymers by FTIR. Journal of Wood Chemistry and Technology 8:1–28. doi:10.1080/02773818808070668.
  • Ashori, A., and Z. Bahreini. 2009. Evaluation of Calotropis gigantea as a promising raw material for fiber-reinforced composite. Journal of Composite Materials 43:1297–304. doi:10.1177/0021998308104526.
  • Cao, E., W. Duan, A. Wang, and A. Wang. 2017. Oriented growth of poly(m-phenylenediamine) on Calotropis gigantea fiber for rapid adsorption of ciprofloxacin. Chemosphere 171:223–30. doi:10.1016/j.chemosphere.2016.12.087.
  • Carabineiro, S. A. C., T. Thavorn-Amornsri, M. F. R. Pereira, and J. L. Figueiredo. 2011. Adsorption of ciprofloxacin on surface-modified carbon materials. Water Research 45:4583–91. doi:10.1016/j.watres.2011.06.008.
  • Carabineiro, S. A. C., T. Thavorn-Amornsri, M. F. R. Pereira, P. Serp, and J. L. Figueiredo. 2012. Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catalysis Today 186:29–34. doi:10.1016/j.cattod.2011.08.020.
  • Chen, Q., T. Zhao, M. Wang, and J. Wang. 2013. Studies of the fibre structure and dyeing properties of Calotropis gigantea, kapok and cotton fibres. Coloration Technology 129:448–53. doi:10.1111/cote.2013.129.issue-6.
  • Dalcanale, E., and F. Montanari. 1986. Selective oxidation of aldehydes to carboxylic acids with sodium chlorite-hydrogen peroxide. The Journal of Organic Chemistry 51:567–69. doi:10.1021/jo00354a037.
  • Demirbaş, A. 2000. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion and Management 41:633–46. doi:10.1016/S0196-8904(99)00130-2.
  • Doorslaer, X. V., J. Dewulf, H. V. Langenhove, and K. Demeestere. 2014. Fluoroquinolone antibiotics: An emerging class of environmental micropollutants. Science of the Total Environment 500–501:250–69. doi:10.1016/j.scitotenv.2014.08.075.
  • Feng, M., X. Wang, J. Chen, R. Qu, Y. Sui, L. Cizmas, Z. Wang, and V. K. Sharma. 2016. Degradation of fluoroquinolone antibiotics by ferrate(VI): Effects of water constituents and oxidized products. Water Research 103:48–57. doi:10.1016/j.watres.2016.07.014.
  • Hoareau, W., W. G. Trindade, B. Siegmund, A. Castellan, and E. Frollini. 2004. Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: Characterization and stability. Polymer Degradation and Stability 86:567–76. doi:10.1016/j.polymdegradstab.2004.07.005.
  • Kang, H. Y., P. J. Jeun, B. Yeoup Chung, J. Sung Kim, and Y. Chang Nho. 2007. Preparation and characterization of glycidyl methacrylate (GMA) grafted kapok fiber by using radiation. Induced-Grafting Technique 13:956–58.
  • Keshk, S., W. Suwinarti, and K. Sameshima. 2006. Physicochemical characterization of different treatment sequences on kenaf bast fiber. Carbohydrate Polymers 65:202–06. doi:10.1016/j.carbpol.2006.01.005.
  • Kumar, K. V., and K. Porkodi. 2007. Comments on “adsorption of 4-chlorophenol from aqueous solutions by xad-4 resin: Isotherm, kinetic, and thermodynamic analysis”. Journal of Hazardous Materials 143:598–99. doi:10.1016/j.jhazmat.2006.12.072.
  • Li, H., D. Zhang, X. Han, and B. Xing. 2014. Adsorption of antibiotic ciprofloxacin on carbon nanotubes: PH dependence and thermodynamics. Chemosphere 95:150–55. doi:10.1016/j.chemosphere.2013.08.053.
  • Li, Y., Z. Wang, X. Xie, J. Zhu, R. Li, and T. Qin. 2017. Removal of Norfloxacin from aqueous solution by clay-biochar composite prepared from potato stem and natural attapulgite. Colloids and Surfaces A: Physicochemical and Engineering 514:126–36. doi:10.1016/j.colsurfa.2016.11.064.
  • Li, Z., H. Hong, L. Liao, C. J. Ackley, L. A. Schulz, R. A. MacDonald, A. L. Mihelich, and S. M. Emard. 2011. A mechanistic study of ciprofloxacin removal by kaolinite. Colloids and Surfaces B: Biointerfaces 88:339–44. doi:10.1016/j.colsurfb.2011.07.011.
  • Liang, Z., Z. Zhao, T. Sun, W. Shi, and F. Cui. 2016. Adsorption of quinolone antibiotics in spherical mesoporous silica: Effects of the retained template and its alkyl chain length. Journal of Hazardous Materials 305:8–14. doi:10.1016/j.jhazmat.2015.11.033.
  • Liu, Y., J. Wang, Y. Zheng, and A. Wang. 2012. Adsorption of methylene blue by kapok fiber treated by sodium chlorite optimized with response surface methodology. Chemical Engineering Journal 184:248–55. doi:10.1016/j.cej.2012.01.049.
  • Mohanty, A. K., M. Misra, and L. T. Drzal. 2001. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Composite Interfaces 8:313–43. doi:10.1163/156855401753255422.
  • Redgrave, L. S., S. B. Sutton, M. A. Webber, and L. J. V. Piddock. 2014. Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. Trends in Microbiology 22:438–45. doi:10.1016/j.tim.2014.04.007.
  • Reeves, R. E. 1943. Stabilization of oxidized cotton fiber. Industrial & Engineering Chemistry 35:1281–83. doi:10.1021/ie50408a014.
  • Sakthivel, J. C., S. Mukhopadhyay, and N. K. Palanisamy. 2005. Some studies on Mudar fibers. Journal of Industrial Textiles 35:63–76. doi:10.1177/1528083705053390.
  • Skelly, J. K. 1960. The Theory and practice of sodium chlorite bleaching. Journal of the Society of Dyers and Colourists 76:469–79. doi:10.1111/j.1478-4408.1960.tb02389.x.
  • Sturini, M., A. Speltini, F. Maraschi, A. Profumo, S. Tarantino, A. F. Gualtieri, and M. Zema. 2016. Removal of fluoroquinolone contaminants from environmental waters on sepiolite and its photo-induced regeneration. Chemosphere 150:686–93. doi:10.1016/j.chemosphere.2015.12.127.
  • Tan, F., D. Sun, J. Gao, Q. Zhao, X. Wang, F. Teng, and X. Quan. 2013. Preparation of molecularly imprinted polymer nanoparticles for selective removal of fluoroquinolone antibiotics in aqueous solution. Journal of Hazardous Materials 244–245:750–57. doi:10.1016/j.jhazmat.2012.11.003.
  • Tang, Y., H. Guo, L. Xiao, S. Yu, N. Gao, and Y. Wang. 2013. Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids and Surfaces A: Physicochemical and Engineering 424:74–80. doi:10.1016/j.colsurfa.2013.02.030.
  • Turel, I., N. Bukovec, and E. Farkas. 1996. Complex formation between some metals and a quinolone family member (ciprofloxacin). Polyhedron 15:269–75. doi:10.1016/0277-5387(95)00231-G.
  • Wang, B., Y. Jiang, F. Li, and D. Yang. 2017. Preparation of biochar by simultaneous carbonization, magnetization and activation for norfloxacin removal in water. Bioresource Technology 233:157–65. doi:10.1016/j.biortech.2017.02.103.
  • Wang, C.-J., Z. Li, and W.-T. Jiang. 2011. Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals. Applied Clay Science 53:723–28. doi:10.1016/j.clay.2011.06.014.
  • Wang, J., Y. Zheng, and A. Wang. 2012. Effect of kapok fiber treated with various solvents on oil absorbency. Industrial Crops and Products 40:178–84. doi:10.1016/j.indcrop.2012.03.002.
  • Yi, L., G. Liang, W. Xiao, W. Duan, A. Wang, and Y. Zheng. 2018. Rapid nitrogen-rich modification of Calotropis gigantea fiber for highly efficient removal of fluoroquinolone antibiotics. Journal of Molecular Liquids 256:408–15. doi:10.1016/j.molliq.2018.02.060.
  • Ying, G. G., L. Y. He, A. J. Ying, Q. Q. Zhang, Y. S. Liu, and J. L. Zhao. 2017. China must reduce its antibiotic use. Environmental Science & Technology 51:1072–73. doi:10.1021/acs.est.6b06424.
  • Yu, F., Y. Li, S. Han, and J. Ma. 2016. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 153:365–85. doi:10.1016/j.chemosphere.2016.03.083.
  • Zhang, Q. Q., G. G. Ying, C. G. Pan, Y. S. Liu, and J. L. Zhao. 2015. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology 49:6772–82. doi:10.1021/acs.est.5b00729.
  • Zhang, X., W. Guo, H. H. Ngo, H. Wen, N. Li, and W. Wu. 2016. Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water. Journal of Environmental Management 172:193–200. doi:10.1016/j.jenvman.2016.02.038.
  • Zheng, Y., E. Cao, Y. Zhu, A. Wang, and H. Hu. 2016a. Perfluorosilane treated Calotropis gigantea fiber: Instant hydrophobic–Oleophilic surface with efficient oil-absorbing performance. Chemical Engineering Journal 295:477–83. doi:10.1016/j.cej.2016.03.074.
  • Zheng, Y., Y. Zhu, A. Wang, and H. Hu. 2016b. Potential of Calotropis gigantea fiber as an absorbent for removal of oil from water. Industrial Crops and Products 83:387–90. doi:10.1016/j.indcrop.2016.01.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.