155
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Post-Impact Compression Behavior of Natural Flax Fiber Composites

ORCID Icon, , , &

References

  • Alves, C., P. M. C. Ferrão, A. J. Silva, L. G. Reis, M. Freitas, L. B. Rodrigues, and D. E. Alves. 2010. Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production 18 (4):313–27. doi:10.1016/j.jclepro.2009.10.022.
  • Aymerich, F., and P. Priolo. 2008. Characterization of fracture modes in stitched and unstitched cross-ply laminates subjected to low-velocity impact and compression after impact loading. International Journal of Impact Engineering 35 (7):591–608. doi:10.1016/j.ijimpeng.2007.02.009.
  • Bensadoun, F., D. Depuydt, J. Baets, I. Verpoest, and A. W. van Vuure. 2017. Low velocity impact properties of flax composites. Composite Structures 176 (Supplement C):933–44. doi:10.1016/j.compstruct.2017.05.005.
  • Bull, D. J., S. M. Spearing, and I. Sinclair. 2014. Observations of damage development from compression-after-impact experiments using ex situ micro-focus computed tomography. Composites Science and Technology 97:106–14. doi:10.1016/j.compscitech.2014.04.008.
  • Cantwell, W. J., and J. Morton. 1989. Comparison of the low and high velocity impact response of CFRP. Composites 20 (6):545–51. doi:10.1016/0010-4361(89)90913-0.
  • Caprino, G., L. Carrino, M. Durante, A. Langella, and V. Lopresto. 2015. Low impact behaviour of hemp fibre reinforced epoxy composites. Composite Structures 133 (Supplement C):892–901. doi:10.1016/j.compstruct.2015.08.029.
  • Cheung, H.-Y., H. Mei-Po, K.-T. Lau, F. Cardona, and D. Hui. 2009. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites Part B: Engineering 40 (7):655–63. doi:10.1016/j.compositesb.2009.04.014.
  • Ghelli, D., and G. Minak. 2011. Low velocity impact and compression after impact tests on thin carbon/epoxy laminates. Composites Part B: Engineering 42 (7):2067–79. doi:10.1016/j.compositesb.2011.04.017.
  • Habibi, M., L. Laperrière, and H. M. Hassanabadi. 2019. Effect of moisture absorption and temperature on quasi-static and fatigue behavior of nonwoven flax epoxy composite. Composites Part B: Engineering 166:31–40. doi:10.1016/j.compositesb.2018.11.131.
  • Habibi, M., L. Laperrière, and H. M. Hassanabadi. 2018a. Influence of low-velocity impact on residual tensile properties of nonwoven flax/epoxy composite. Composite Structures 186:175–82. doi:10.1016/j.compstruct.2017.12.024.
  • Habibi, M., L. Laperrière, and H. M. Hassanabadi. 2018b. Replacing stitching and weaving in natural fiber reinforcement manufacturing, part 1: Mechanical behavior of unidirectional flax fiber composites. Journal of Natural Fibers 1–13.
  • Habibi, M., L. Laperrière, and H. M. Hassanabadi. 2018c. Replacing stitching and weaving in natural fiber reinforcement manufacturing, part 2: Mechanical behavior of flax fiber composite laminates. Journal of Natural Fibers 1–10.
  • Habibi, M., L. Laperrière, G. Lebrun, and L. Toubal. 2017a. Combining short flax fiber mats and unidirectional flax yarns for composite applications: Effect of short flax fibers on biaxial mechanical properties and damage behaviour. Composites Part B: Engineering 123:165–78. doi:10.1016/j.compositesb.2017.05.023.
  • Habibi, M., G. Lebrun, and L. Luc. 2017b. Experimental characterization of short flax fiber mat composites: Tensile and flexural properties and damage analysis using acoustic emission. Journal of Materials Science 52 (11):6567–80. doi:10.1007/s10853-017-0892-1.
  • Hart, K. R., P. X. L. Chia, L. E. Sheridan, E. D. Wetzel, N. R. Sottos, and S. R. White. 2017. Comparison of compression-after-impact and flexure-after-impact protocols for 2D and 3D woven fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing 101:471–79. doi:10.1016/j.compositesa.2017.07.005.
  • Koronis, G., A. Silva, and M. Fontul. 2013. Green composites: A review of adequate materials for automotive applications. Composites Part B: Engineering 44 (1):120–27. doi:10.1016/j.compositesb.2012.07.004.
  • Liang, S., L. Guillaumat, and P.-B. Gning. 2015. Impact behaviour of flax/epoxy composite plates. International Journal of Impact Engineering 80 (Supplement C):56–64. doi:10.1016/j.ijimpeng.2015.01.006.
  • Molaba, T. P., S. Chapple, and M. J. John. 2018. Flame retardant treated flax fibre reinforced phenolic composites: Ageing and thermal characteristics. Fire and Materials 42.1:50–58. doi:10.1002/fam.2456.
  • Pavier, M. J., and M. P. Clarke. 1995. Experimental techniques for the investigation of the effects of impact damage on carbon-fibre composites. Composites Science and Technology 55 (2):157–69. doi:10.1016/0266-3538(95)00097-6.
  • Prabhakar, M. N., A. U. R. Shah, and J.-I. Song. 2015. A review on the flammability and flame retardant properties of natural fibers and polymer matrix based composites. Polymer 37:40.
  • Remacha, M., S. Sánchez-Sáez, B. López-Romano, and E. Barbero. 2015. A new device for determining the compression after impact strength in thin laminates. Composite Structures 127:99–107. doi:10.1016/j.compstruct.2015.02.079.
  • Rivallant, S., C. Bouvet, E. A. Abdallah, B. Broll, and J.-J. Barrau. 2014. Experimental analysis of CFRP laminates subjected to compression after impact: The role of impact-induced cracks in failure. Composite Structures 111:147–57. doi:10.1016/j.compstruct.2013.12.012.
  • Rodríguez, E., R. Petrucci, D. Puglia, J. M. Kenny, and A. Vazquez. 2005. Characterization of composites based on natural and glass fibers obtained by vacuum infusion. Journal of Composite Materials 39 (3):265–82. doi:10.1177/0021998305046450.
  • Sun, X. C., and S. R. Hallett. 2018, Failure mechanisms and damage evolution of laminated composites under Compression after impact (CAI): Experimental and numerical study. Composites Part A: Applied Science and Manufacturing, 104: 41-59.
  • Sun, X. C., and S. R. Hallett. 2018. Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study. Composites Part A: Applied Science and Manufacturing 104:41–59. doi:10.1016/j.compositesa.2017.10.026.
  • Tirillò, J., L. Ferrante, F. Sarasini, L. Lampani, E. Barbero, S. Sánchez-Sáez, T. Valente, and P. Gaudenzi. 2017. High velocity impact behaviour of hybrid basalt-carbon/epoxy composites. Composite Structures 168 (Supplement C):305–12. doi:10.1016/j.compstruct.2017.02.039.
  • Yan, H., C. Oskay, A. Krishnan, and L. R. Xu. 2010. Compression-after-impact response of woven fiber-reinforced composites. Composites Science and Technology 70 (14):2128–36. doi:10.1016/j.compscitech.2010.08.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.