234
Views
53
CrossRef citations to date
0
Altmetric
Research Article

Characterization studies on Calotropis procera fibers and their performance as reinforcements in epoxy matrix

, , &

References

  • Abbas, B., A. E. El Tayeb, and Y. R. Sulleiman. 1992. Calotropis procera: Feed potential for arid zones. Veterinary Record 131 (6):132. doi:10.1136/vr.131.6.132-a.
  • Arora, S. S., and K. S. Arora. 1982. Calotropis procera (Ait.) R. Br.–Ak: A new and free source of fibre and renewable hydrocarbons. AMA, Agricultural Mechanization in Asia, Africa and Latin America 13 (3):71–75.
  • Begum, N., B. Sharma, and R. S. Pandey. 2011. Evaluation of insecticidal efficacy of calotropis procera and annona squamosa ethanol extracts against musca domestica. Journal of Biofertilizers and Biopesticides 1 (1):101. doi:10.4172/2155-6202.1000101.
  • Belouadah, Z., A. Ati, and M. Rokbi. 2015. Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydrate Polymers 134:429–37. doi:10.1016/j.carbpol.2015.08.024.
  • Chirayil, C. J., J. Joy, L. Mathew, M. Mozetic, J. Koetz, and S. Thomas. 2014. Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Industrial Crops and Products 59:27–34. doi:10.1016/j.indcrop.2014.04.020.
  • Dittenber, D. B., and H. V. S. GangaRao. 2012. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing 43 (8):1419–29. doi:10.1016/j.compositesa.2011.11.019.
  • Fiore, V., T. Scalici, and A. Valenza. 2014. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydrate Polymers 106:77–83. doi:10.1016/j.carbpol.2014.02.016.
  • Ganesh, B. N., and B. Rekha. 2013. A comparative study on tensile behaviour of plant and animal fiber reinforced composites. International Journal of Innovation and Applied Studies 2 (4):645–48.
  • Ganeshan, P., B. NagarajaGanesh, P. Ramshankar, and K. Raja. 2018. Calotropis gigantea fibers: A potential reinforcement for polymer matrices. International Journal of Polymer Analysis and Characterization 23 (3):271–77. doi:10.1080/1023666X.2018.1439560.
  • Hassan, L. M., T. M. Galal, E. A. Farahat, and M. M. El Midany. 2015. The biology of Calotropis procera. Trees 29 (2):312–20. doi:10.1007/s00468-015-1158-7.
  • Ho, M.-P., H. Wang, J.-H. Lee, C.-K. Ho, K.-T. Lau, J. Leng, and D. Hui. 2012. Critical factors on manufacturing processes of natural fibre composites. Composites Part B: Engineering 43 (8):3549–62. doi:10.1016/j.compositesb.2011.10.001.
  • Jawaid, M., O. Y. Alothman, M. T. Paridah, and H. P. S. Abdul Khalil. 2013a. Effect of fiber treatment on dimensional stability and chemical resistance properties of hybrid composites. International Journal of Polymer Analysis and Characterization 18 (8):608–16. doi:10.1080/1023666X.2013.842332.
  • Jawaid, M., H. A. Khalil, A. Hassan, R. Dungani, and A. Hadiyane. 2013b. Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Composites Part B 45:619–24. doi:10.1016/j.compositesb.2012.04.068.
  • Jayaramudu, B. R., Guduri, and A. V. Rajulu. 2009. Characterization of Natural Fabric Sterculia urens. International Journal of Polymer Analysis and Characterization 14 (2):115–25. doi:10.1080/10236660802601415.
  • Jayaramudu, J., A. Maity, E. R. Sadiku, B. R. Guduri, A. V. Rajulu, C. V. Ramana, and R. Li. 2011. Structure and properties of new natural cellulose fabrics from Cordia dichotoma. Carbohydrate Polymers 86 (4):1623–29. doi:10.1016/j.carbpol.2011.06.071.
  • Maache, M., A. Bezazi, S. Amroune, F. Scarpa, and A. Dufresne. 2017. Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydrate Polymers 171:163–72. doi:10.1016/j.carbpol.2017.04.096.
  • Mahapatra, N. N., May 7, 2018. Processing of textile fibres from wild fruit, Chemarc, Accessed January 31, 2019. https://www.chemarc.com/content/article/processing-of-textile-fibres-from-wild-fruit/5aeff5552d35eb266a4cc558.
  • Mathews, B. May 24, 2018. Calotropis procera plant fibres set for production, Apparel Insider, Accessed January 31, 2019. https://apparelinsider.com/calotropis-procera-plant-fibres-set-production.
  • Mayandi, K., N. Rajini, P. Pitchipoo, J. W. Jappes, and A. V. Rajulu. 2016. Extraction and characterization of new natural lignocellulosic fiber Cyperus pangorei. International Journal of Polymer Analysis and Characterization 21 (2):175–83. doi:10.1080/1023666X.2016.1132064.
  • Murti, Y., B. Yogi, and D. Pathak. 2010. Pharmacognostic standardization of leaves of Calotropis procera (Ait.) R. Br. (Asclepiadaceae). International Journal of Ayurvedic Research 1 (1):14–17. doi:10.4103/0974-7788.59938.
  • NagarajaGanesh, B., and R. Muralikannan. 2016a. Physico-chemical, thermal and flexural characterization of Cocos nucifera fibers. International Journal of Polymer Analysis and Characterization 21 (3):244–50. doi:10.1080/1023666X.2016.1139359.
  • NagarajaGanesh, B., and R. Muralikannan. 2016b. Extraction and characterization of lignocellulosic fibers from Luffa cylindrica fruit. International Journal of Polymer Analysis and Characterization 21 (3):259–66. doi:10.1080/1023666X.2016.1146849.
  • NagarajaGanesh, B., and R. Muralikannan. 2016c. Comprehensive characterization of lignocellulosic fruit fibers reinforced hybrid polyester composites. International Journal of Materials Science and Applications 5 (6):302–07. doi:10.11648/j.ijmsa.20160506.21.
  • Oun, A. A., and J. W. Rhim. 2016. Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: Effect of isolation method. Materials Letters 168:146–50. doi:10.1016/j.matlet.2016.01.052.
  • Pickering, K. L., M. A. Efendy, and T. M. Le. 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing 83:98–112. doi:10.1016/j.compositesa.2015.08.038.
  • Poletto, M., A. J. Zattera, and R. M. Santana. 2012. Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology 126:7–12. doi:10.1016/j.biortech.2012.08.133.
  • Ponnu Krishnan, P., and J. Selwin Rajadurai. 2017. Microscopical, physico-chemical, mineralogical, and mechanical characterization of Sansevieria zeylanica fibers as potential reinforcement of composite structures. Journal of Composite Materials 51 (6):811–29. doi:10.1177/0021998316653461.
  • Ramanaiah, K., A. R. Prasad, and K. H. Chandra Reddy. 2013. Mechanical and thermo-physical properties of fish tail palm tree natural fiber–Reinforced polyester composites. International Journal of Polymer Analysis and Characterization 18 (2):126–36. doi:10.1080/1023666X.2013.747464.
  • Ramanaiah, K., A. V. Ratna Prasad, and K. H. Chandra Reddy. 2011. Mechanical properties and thermal conductivity of Typha angustifolia natural fiber–Reinforced polyester composites. International Journal of Polymer Analysis and Characterization 16 (7):496–503. doi:10.1080/1023666X.2011.598528.
  • Ramli, R., R. M. Yunus, M. D. H. Beg, and D. M. R. Prasad. 2012. Oil palm fiber reinforced polypropylene composites: Effects of fiber loading and coupling agents on mechanical, thermal, and interfacial properties. Journal of Composite Materials 46 (11):1275–84. doi:10.1177/0021998311417647.
  • Sapuan, S. M., and M. R. Mansor. 2014. Concurrent engineering approach in the development of composite products: A review. Materials & Design 58:161–67. doi:10.1016/j.matdes.2014.01.059.
  • Seki, Y., M. Sarikanat, K. Sever, and C. Durmuşkahya. 2013. Extraction and properties of Ferula communis (chakshir) fibers as novel reinforcement for composites materials. Composites Part B: Engineering 44 (1):517–23. doi:10.1016/j.compositesb.2012.03.013.
  • Thakur, V. K., M. K. Thakur, and R. K. Gupta. 2014. Review: Raw natural fiber–Based polymer composites. International Journal of Polymer Analysis and Characterization 19 (3):256–71. doi:10.1080/1023666X.2014.880016.
  • Varshney, A. C., and K. L. Bhoi. 1987. Some possible industrial properties of Calotropis procera (aak) floss fibre. Biological Wastes 22 (2):157–61. doi:10.1016/0269-7483(87)90048-6.
  • Varshney, A. C., and K. L. Bhoi. 1988. Cloth from bast fibre of the Calotropis procera (Aak) plant. Biological Wastes 26 (3):229–32. doi:10.1016/0269-7483(88)90168-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.