334
Views
31
CrossRef citations to date
0
Altmetric
Research Article

Characterization of Natural Cellulosic Fiber from Cereus Hildmannianus

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Akerholm, M., B. Hinterstoisser, and L. Salmen. 2004. Characterization of the crystalline structures of cellulose using static and dynamic FTIR spectroscopy. Carbohydrate Research 339 (3):569–78. doi:10.1016/j.carres.2003.11.012.
  • Anderson, and F. Edward. 2001. The Cactus Family. Oregon: Timber Press.
  • Arthanarieswaran, V. P., A. Kumaravel, and S. S. Saravanakumar. 2015. Physico-chemical properties of alkali-treated Acacia leucophloea fibers. International Journal of Polymer Analysis and Characterization 20:704–13. doi:10.1080/1023666X.2015.1081133.
  • Balaji, A. N., and K. J. Nagarajan. 2017. Characterization of alkali-treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydrate Polymers 174:200–08. doi:10.1016/j.carbpol.2017.06.065.
  • Béakou, A., R. Ntenga, J. Lepetit, J. A. Atéba, and L. O. Ayina. 2008. Physico-chemical and microstructural characterization of “Rhectophyllum camerunense” plant fiber. Composites Part A: Applied Science and Manufacturing 39:67–74. doi:10.1016/j.compositesa.2007.09.002.
  • Biagiotti, J., D. Puglia, L. Torre, M. Kenny, A. Arbelaiz, G. Cantero, C. Marieta, and R. L. Ponte. 2004. A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polymer Composite 25 (5):470–79. doi:10.1002/pc.20040.
  • Binoj, J. S., R. Edwin Raj, V. S. Sreenivasan, and G. Rexin Thusnavis. 2016. Morphological, physical, mechanical, chemical and thermal characterization of sustainable Indian Areca fruit Husk fibers (Areca catechu L.) as a potential alternate for hazardous synthetic fibers. Journal of Bionic Engineering 13:156–65. doi:10.1016/S1672-6529(14)60170-0.
  • Conrad, C. M. 1944. Determination of wax in cotton fiber a new alcohol extraction method. Industrial Engineering Chemistry and Analytical Edition 16:745–48. doi:10.1021/i560136a007.
  • De Rosa, I. M., J. M. Kenny, D. Puglia, C. Santuil, and F. Sarasini. 2010. Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology 70:116–22. doi:10.1016/j.compscitech.2009.09.013.
  • Elenga, R. G., G. F. Dirras, J. Goma Maniongui, P. Djemia, and M. P. Biget. 2009. On the microstructure and physical properties of untreated raffia textilis fiber. Composites Part A: Applied Science and Manufacturing 40:418–22. doi:10.1016/j.compositesa.2009.01.001.
  • Fiore, V., A. Valenza, and G. Di Bella. 2011. Artichoke (Cynara carduncullus L.) fibers as potential reinforcement of composite structures. Composites Science and Technology 71:1138–44. doi:10.1016/j.compscitech.2011.04.003.
  • Helbert, W., J. Sugiyma, M. Ishihara, and S. Yamanaka. 1997. Characterization of native crystalline cellulose in the cell walls of Oomycota. Journal of Biotechnology 57 (1–3):29–37. doi:10.1016/S0168-1656(97)00084-9.
  • Indran, S. R., R. Raj, and V. S. Sreenivasan. 2014. Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydrate Polymers 110:423–29. doi:10.1016/j.carbpol.2014.04.051.
  • James, D. M., K. Roberto, and O. Carlos. 2002. A Cactus Odyssey: Journeys in the wilds of Bolivia, Peru, And Argentina. Oregon: Timber Press.
  • Liu, W., A. K. Mohanty, L. T. Drzal, P. Askel, and M. Misra. 2004. Effects of alkali treatment on the structure, morphology and thermal properties of native grass fibers as reinforcements for polymer matrix composites. Journal of Materials Science 39 (3):1051–54. doi:10.1016/S2238-7854(12)70032-7.
  • Manimaran, P., P. Senthamaraikannan, K. Murugananthan, and M. R. Sanjay. 2017. Physicochemical properties of new cellulosic fibers from Azadirachta indica plant. Journal of Natural Fibers 15:29–38. doi:10.1080/15440478.2017.1302388.
  • Mittal, V., and S. Sinha. 2017. Effect of alkali treatment on the thermal properties of wheat straw fiber reinforced epoxy composites. Journal of Composite Materials 51 (3):323–31. doi:10.1177/0021998316646168.
  • Mwaikambo, L. Y., and M. P. Ansell. 2002. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalisation. Journal of Applied Polymer Science 84 (12):2222–34. doi:10.1002/app.10460.
  • Prithiviraj, M., R. Muralikannan, P. Senthamaraikannan, and S. S. Saravanakumar. 2016. Characterization of new natural cellulosic fiber from Perotis indica plant. International Journal of Polymer Analysis and Characterization 21:669–74. doi:10.1080/1023666X.2016.1202466.
  • Rajkumar, R., A. Manikandan, and S. S. Saravanakumar. 2016. Physicochemical properties of alkali treated new cellulosic fiber from the cotton shell. International Journal of Polymer Analysis and Characterization 21:359–64. doi:10.1080/1023666X.2016.1160509.
  • Reddy, N., and Y. Yang. 2005. Structure and properties of high quality natural cellulose fibers from cornstalks. Polymer 46 (15):5494–500. doi:10.1016/j.polymer.2005.04.073.
  • Reddy, N., and Y. Yang. 2009. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresource Technology 100:3563–69. doi:10.1016/j.biortech.2009.02.047.
  • Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, P. Sudhakar, and R. Baskaran. 2013. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydrate Polymers 92:1928–33. doi:10.1016/j.carbpol.2012.11.064.
  • Senthamaraikannan, P., S. S. Saravanakumar, V. P. Arthanarieswaran, and P. Sugumaran. 2016. Physico-chemical properties of new cellulosic fibers from the bark of Acacia planifrons. International Journal of Polymer Analysis and Characterization 21:207–13. doi:10.1080/1023666X.2016.1133138.
  • Shanmugasundaram, N., I. Rajendran, and T. Ramkumar. 2018. Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydrate Polymers 195:566–75. doi:10.1016/j.carbpol.2018.04.127.
  • Sreenivasan, V. S., S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy. 2011. Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres – An exploratory investigation. Materials & Design 32:453–61. doi:10.1016/j.matdes.2010.06.004.
  • Subramanian, K., P. S. Kumar, P. Jeyapal, and N. Venkatesh. 2005. Characterization of lignocellulosic seed fiber from Wrightia tinctoria plant for textile applications an exploratory investigation. European Polymer Journal 41 (4):853–61. doi:10.1016/j.eurpolymj.2004.10.037.
  • Yang, H., R. Yan, H. Chen, D. H. Lee, and C. Zheng. 2007. Characteristics of hemicellulose, cellulose, and lignin pyrolysis. Fuel 86:1781–88. doi:10.1016/j.fuel.2006.12.013.
  • Zhbankov, R. G., S. P. Firsov, D. K. Buslov, N. A. Nikonenko, M. K. Marchewka, and H. Ratajczak. 2002. Structural physico-chemistry of cellulose macromolecules. Vibrational spectra and structures of cellulose. Journal of Molecular Structure 614 (1–3):117–25. doi:10.1016/S0022-2860(02)00252-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.