341
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Compendious Characterization of Chemically Treated Natural Fiber from Pineapple Leaves for Reinforcement in Polymer Composites

, &

References

  • Akintayo, C. O., M. A. Azeez, S. Beuerman, E. T. Akintayo, M. A. Azeez, S. Beuerman, and E. T. Akintayo. 2016. Spectroscopic, mechanical, and thermal characterization of native and modified nigerian coir fibers. Journal of Natural Fibers 13(5):520–31. Taylor & Francis. doi:10.1080/15440478.2015.1076365.
  • Asim, M., K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M. R. Ishak, and M. Enamul Hoque. 2015. A review on pineapple leaves fibre and its composites. International Journal of Polymer Science 2015:1–17. doi:10.1155/2015/950567.
  • Asim, M., M. Jawaid, K. Abdan, and M. R. Ishak. 2017. Effect of pineapple leaf fibre and kenaf fibre treatment on mechanical performance of phenolic hybrid composites. Fibers and Polymers 18 (5):940–47. doi:10.1007/s12221-017-1236-0.
  • Asim, M., M. Jawaid, K. Abdan, and M. R. Ishak. 2016. Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. Journal of Bionic Engineering 13:426–35. doi:10.1016/S1672-6529(16)60315-3.
  • Attharangsan, S., and S. Saikrasun. 2013. Kinetic analysis of thermal and thermo-oxidative decomposition of recycled PE/PALF bio-based composites. International Journal of Plastics Technology 17 (1):94–110. doi:10.1007/s12588-013-9051-y.
  • Balaji, A. N., and K. J. Nagarajan. 2017. Characterization of alkali treated and untreated new cellulosic fiber from saharan aloe vera cactus leaves. Carbohydrate Polymers 174:200–08. Elsevier Ltd. doi:10.1016/j.carbpol.2017.06.065.
  • Boopathi, L., P. S. Sampath, and K. Mylsamy. 2012. Investigation of physical, chemical and mechanical properties of raw and alkali treated borassus fruit fiber. Composites Part B: Engineering 43:3044–52. doi:10.1016/j.compositesb.2012.05.002.
  • Chakravarty, A. C. 1961. Measurement of density of fibers of jute by density gradient column. Polymer Science 54 (160):S52–56. doi:10.1002/pol.1961.1205416040.
  • Devnani, G. L., V. Mittal, and S. Sinha. 2018. Mathematical modelling of water absorption behavior of bagasse fiber reinforced epoxy composite material. Materials Today: Proceedings 5:16912–18. Elsevier Ltd. doi:10.1016/j.matpr.2018.04.094.
  • Devnani, G. L., and S. Sinha. 2018. African teff straw as a potential reinforcement in polymer composites for light-weight applications : mechanical, thermal, physical, and chemical characterization before and after alkali treatment african teff straw as a potential reinforcement in polymer composites for light-weight applications : mechanical, thermal. Journal of Natural Fibers Taylor & Francis. 1–15. doi:10.1080/15440478.2018.1546640.
  • Dong, C. H., Z. Lv, L. Zhang, H. Shen, N. Li, and P. Zhu. 2014a. Structure and characteristics of pineapple leaf fibers obtained from pineapple leaves. Advanced Materials Research 998–999:316–19. doi:10.4028/www.scientific.net/AMR.998-999.316.
  • Eckelt, J., K. Doris Richardt, C. Schuster, and B. A. Wolf. 2010. Thermodynamic interactions of natural and of man-made cellulose fibers with water. Cellulose 17 (6):1079–93. doi:10.1007/s10570-010-9443-5.
  • Faruk, O., A. K. Bledzki, H.-P. Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers : 2000 – 2010. Progress in Polymer Science 37(11):1552–96. Elsevier Ltd. doi:10.1016/j.progpolymsci.2012.04.003.
  • He, J.-Y., Z.-K. Zhuang, T. Huang, Q.-F. Li, M.-F. Li, G.-R. Deng, W.-W. Lian, Z.-Q. Ou, S.-M. Qin, and J. Zhang. 2013. A study on the structure and properties of pineapple leaf viscose fiber. Advanced Materials Research 627:3–14. doi:10.4028/www.scientific.net/AMR.627.3.
  • Jain, J., S. Jain, and S. Sinha. 2018. Characterization and thermal kinetic analysis of pineapple leaf fibers and their reinforcement in epoxy. Journal of Elastomers and Plastics. doi:10.1177/0095244318783024.
  • Li, S., X. Shaoping, S. Liu, C. Yang, and Q. Lu. 2004. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Processing Technology 85:1201–11. doi:10.1016/j.fuproc.2003.11.043.
  • Luiz, H., O. Jr, M. Poletto, and A. Jose. 2014. Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose. 177–88. doi:10.1007/s10570-013-0094-1.
  • Madhu, P., M. R. Sanjay, P. Senthamaraikannan, S. Pradeep, and B. Yogesha. 2019. A review on synthesis and characterization of commercially available natural fibers : Part II a review on synthesis and characterization of commercially. Journal of Natural Fibers 16(1):25–36. Taylor & Francis. doi:10.1080/15440478.2017.1379045.
  • Mukherjee, P. S., and K. G. Satyanarayana. 1986. Structure and properties of some vegetable fibres. II. Pineapple fibre. Journal Of Materials Science 21:51–56. doi:10.1007/BF01144699.
  • Panyasart, K., N. Chaiyut, T. Amornsakchai, and O. Santawitee. 2014. Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy Procedia 56:406–13. Elsevier B.V. doi:10.1016/j.egypro.2014.07.173.
  • Pavithran, C., P. S. Mukherjee, M. Brahmakumar, and A. D. Damodaran. 1987. Impact properties of natural fibre composites. Journal of Materials Science Letters 6:882–84. doi:10.1007/BF01729857.
  • Pickering, K. L., M. G. Aruan Efendy, and T. M. Le. 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing 83:98–112. doi:10.1016/j.compositesa.2015.08.038.
  • Pinheiro, I. F., A. R. Morales, and L. H. Mei. 2014. Polymeric biocomposites of poly (butylene adipate-co-terephthalate) reinforced with natural munguba fibers. Cellulose 21 (6):4381–91. doi:10.1007/s10570-014-0387-z.
  • Rahman, M. A. 2011. Study on modified pineapple leaf fiber. Journal of Textile and Apparel, Technology and Management 7 (2):1–16.
  • Rashid, B., Z. Leman, M. Jawaid, M. J. Ghazali, and M. R. Ishak. 2016. Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: effect of treatment. Cellulose 23(5):2905–16. Springer Netherlands. doi:10.1007/s10570-016-1005-z.
  • Razali, N., M. S. Salit, M. Jawaid, M. R. Ishak, and Y. Lazim. 2015. A study on chemical composition, physical, tensile, morphological, and thermal properties of roselle fibre: effect of fibre maturity. BioResources 10:1803–23. doi:10.15376/biores.10.1.1803-1824.
  • Saha, S. C., B. K. Das, P. K. Ray, S. N. Pandey, and K. Goswami. 1990. SEM studies of the surface and fracture morphology of pineapple leaf fibers. Textile Research Journal 60 (12):726–31. doi:10.1177/004051759006001205.
  • Sanjay, M. R., P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep. 2018. Characterization and properties of natural fi ber polymer composites : a comprehensive review. Journal of Cleaner Production 172:566–81.
  • Sapuan, S. M., A. R. Mohamed, J. P. Siregar, and M. R. Ishak. 2011. Pineapple leaf fibers and PALF reinforced polymer composites. In Cellulose fibers: Bio- and nano-polymer composites edited by Susheel Kalia, B. S. Kaith and Inderjeet Kaur, 325–43. Springer. doi:10.1007/978-3-642-17370-7.
  • Sari, N. H., I. N. G. Wardana, Y. S. Irawan, E. Siswanto, N. Herlina, I. N. G. Wardana, Y. S. Irawan, and E. Siswanto. 2018. Characterization of the chemical, physical, and mechanical properties of NaOH-treated natural cellulosic fibers from corn husks characterization of the chemical, physical, and mechanical properties of NaOH-treated natural cellulosic fibers from corn husks. Journal of Natural Fibers 15(4):545–58. Taylor & Francis. doi:10.1080/15440478.2017.1349707.
  • Senthamaraikannan, P., and M. Kathiresan. 2018. Characterization of raw and alkali treated new natural cellulosic fiber from coccinia grandis. L. Carbohydrate Polymers 186:332–43. Elsevier. doi:10.1016/j.carbpol.2018.01.072.
  • Siregar, J. P., M. S. Salit, M. Z. A. Rahman, and K. Z. H. M. Dahlan. 2011. Thermogravimetric analysis (TGA) and Differential Scanning Calometric (DSC) Analysis of Pineapple Leaf Fibre (PALF) reinforced high impact polystyrene (HIPS) composites. Pertanika Journal of Science and Technology 19 (1):161–70.
  • Subramanya, R., K. G. Satyanarayana, and B. S. Pilar. 2017. Evaluation of structural, tensile and thermal properties of banana fibers. Journal of Natural Fibers 14(4):485–97. Taylor & Francis. doi:10.1080/15440478.2016.1212771.
  • Sydow, Z., and K. Bieńczak. 2018. The overview on the use of natural fibers reinforced composites for food packaging. Journal of Natural Fibers Taylor & Francis. 1–12. doi:10.1080/15440478.2018.1455621.
  • Truong, M., W. Zhong, S. Boyko, and M. Alcock. 2009. a comparative study on natural fibre density measurement. The Journal of the Textile Institute 100 (6):525–29. doi:10.1080/00405000801997595.
  • Verma, A. K., and P. Mondal. 2016. Physicochemical characterization and pyrolysis kinetics of wood sawdust. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 38(17):2536–44. Taylor & Francis. doi:10.1080/15567036.2015.1072604.
  • Yao, F., Q. Wu, Y. Lei, W. Guo, and Y. Xu. 2008. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability 93 (1):90–98. doi:10.1016/j.polymdegradstab.2007.10.012.
  • Yusriah, L., S. M. Sapuan, E. S. Zainudin, and M. Mariatti. 2014. Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (areca catechu) husk fibre. Journal of Cleaner Production 72:174–80. Elsevier Ltd. doi:10.1016/j.jclepro.2014.02.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.