324
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Thermal Characterization of Flax/Basalt Fiber Reinforced Phenol Resin Brake Pad Material: Effective Replacement of Asbestos

, &

References

  • Aigbodion, V. S., U. Akadike, S. B. Hassan, F. Asuke, and J. O. Agunsoye. 2010. Development of asbestos – Free brake pad using bagasse. Tribology International 32 (1):45–50.
  • Akincioglu, G., H. Oktem, I. Uygur, and S. Akincioglu. 2018. Determination of friction Brake pads reinforced with hazelnut shell and boron dusts. Arabian Journal for Science and Technology 43 (9):4727–37. doi:10.1007/s13369-018-3067-8.
  • Angrizani, C. C., H. L. Ornaghi, A. J. Zattera, and S. C. Amico. 2017. Thermal and mechanical investigation of interlaminate glass/curaua hybrid polymer composites. Journal of Natural Fibers 14 (2):271–77. doi:10.1080/15440478.2016.1193091.
  • Berozashvili, M. 2001. Continuous reinforcing fibres are being offered for construction, civil engineering and other composites applications. Advanced Material Composite News, Compos Worldwide 6:5–6.
  • Cai, P., Y. Wang, T. Wang, and Q. Wang. 2016. Improving tribological behaviors of friction material by mullite. Tribology International 93:282–88. doi:10.1016/j.triboint.2015.09.039.
  • Cho, M. H., J. Ju, S. J. Kim, and H. Jang. 2006. Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials. Wear 260 (7–8):855–60. doi:10.1016/j.wear.2005.04.003.
  • Chung, K., K. Yoshioka, and J. C. Seferis. 2002. Hygro thermal cycling effect on the durability of phenolic base composites. Polymer Composite 23 (2):141–52. doi:10.1002/pc.10420.
  • Cueva, G., A. Sinatora, W. L. Guesser, and A. P. Tschiptschin. 2003. Wear resistance of cast irons used in brake disc rotors. Wear 255:1256–60. doi:10.1016/S0043-1648(03)00146-7.
  • El Mansouri, N. E., Q. Yuan, and F. Huang. 2011. Characterization of alkaline lignins for use in penol-formaldehyde and epoxy resins. BioResources 6 (3):2647–62.
  • Farsani, R. E., S. M. R. Khalili, and M. Najafi. 2013. Effect of thermal cycling on hardness and impact properties of polymer composites reinforced by basalt and carbon fibers. Journal of Thermal Stresses 36:684–98. doi:10.1080/01495739.2013.787846.
  • Gajiwala, H. M., and R. Zand. 2000. Synthesis and characterization of thermally stable polymers containing phenazine. Polymer 41:2009–15. doi:10.1016/S0032-3861(99)00371-7.
  • Gurunath, P. V., and J. Bijwe. 2007. Friction and wear studies on brake-pad materials based on newly developed resin. Wear 263:1212–19. doi:10.1016/j.wear.2006.12.050.
  • Holinksi, R., and D. Hesse. 2003. Changes at interfaces of friction components during braking. Journal of Automobile Engineering 217:764–70.
  • Idris, U. D., V. S. Aigbodion, I. J. Abubakar, and C. I. Nwoye. 2015. Eco-friendly asbestos free brake-pad: Using banana peels. Journal of King Saud University – Engineering Sciences 27:185–92. doi:10.1016/j.jksues.2013.06.006.
  • Kadykova, Y., S. E. Artemenko, O. V. Vasil’eva, and A. N. Leont’ev. 2003. Physicochemical reaction in polymer composite materials made from carbon. Glass, and Basalt Fibers. Fibre Chemistry 35 (6):455–57. doi:10.1023/B:FICH.0000020779.53675.20.
  • Karthik Babu, N. B., S. Muthukumaran, S. Arokiasamy, and T. Ramesh. 2018. Thermal and mechanical behavior of the coir powder filled polyester micro-composites. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2018.1555503.
  • Knop, A., and L. A. Pilato. 1985. Modified and thermal-resistant resins. In Phenolic Resins. Berlin, Heidelberg: Springer. ISBN online: 978-3-662-02429-4.
  • Kumar, I. A., A. Kumar, V. Srinivasan, and N. M. Raffi. 2018. Wear study on basalt, flax and hybrid fiber reinforced phenolic composites. Journal of Advanced Microscopy Research 13 (1):65–71. doi:10.1166/jamr.2018.1359.
  • Liu, J., J. Yang, M. Chen, L. Lei, and Z. Wu. 2018. Effect of Sio2, Al2o3 on heat resistance of basalt fiber. Thermochimica Acta 660:56–80. doi:10.1016/j.tca.2017.12.023.
  • Lopresto, V., C. Leone, and I. De Iorio. 2011. Mechanical characterization of basalt fibre reinforced plastic. Composite Part B Engineering 42 (4):717–23. doi:10.1016/j.compositesb.2011.01.030.
  • Milani, M. D. Y., D. S. Samarawickrama, G. P. C. A. Dharmasiri, and I. R. M. Kottegoda. 2016. Study the structure, morphology, and thermal behavior of banana fiber and its charcoal derivative from selected banana varieties. Journal of Natural Fibers 13 (3):332–42. doi:10.1080/15440478.2015.1029195.
  • Mohanty, S., and Y. P. Chugh. 2007. Development of fly ash-based automotive brake lining. Tribology International 40:1217–24. doi:10.1016/j.triboint.2007.01.005.
  • Mouritz, A. P., and A. G. Gibson. 2007. Fire properties of polymer composite materials, Vol. 143. Springer, Netherlands: Springer Science & Business Media.
  • Najafi, M., S. M. R. Khalili, and R. E. Farsani. 2016. Accelerated heat aging study of phenolic/basalt fiber reinforced composites. Mechanics of Advanced Composite Structures 3:01–07.
  • Papadopoulou, E., and K. Chrissafis. 2011. Thermal study of phenol–Formaldehyde resin modified with cashew nut shell liquid. ThermochimicaActa 512:105–09. doi:10.1016/j.tca.2010.09.008.
  • Pielichowski, K., and J. Njuguna. 2005. Thermal degradation of polymeric materials. Shawbury, Surrey: RAPRA Technologies Limited.
  • Pilato, L., ed. 2010. Phenolic resins: A century of progress, Vol. 11, 2010. New York: Springer.
  • Rwawiire, S., and B. Tomkova. 2015. Morphological, thermal, and mechanical characterization of Sansevieria trifasciata fibers. Journal of Natural Fibers 12 (3):201–10. doi:10.1080/15440478.2014.914006.
  • Shayed, M. A., R. D. Hund, and C. Cherif. 2014. Improvement of thermo-mechanical properties of basalt fiber using heat resistant polymeric coatings. Fibers and Polymers 15 (10):2086–94. doi:10.1007/s12221-014-2086-7.
  • Titok, V., V., . Leontiev, L. Shostak, and L. Khotyleva. 2006. Thermogravimetric analysis of the flax bast fibre bundle. Journal of Natural Fibers 3 (1):35–41. doi:10.1300/J395v03n01_04.
  • Tiwari, A., H. S. Jaggi, R. K. Kachhap, B. K. Satapathy, S. N. Maiti, and B. S. Tomar. 2014. Comparative performance assessment of cenosphere and barium sulphate based friction composites. Wear 309 (1–2):259–68. doi:10.1016/j.wear.2013.12.001.
  • Vazquez, G., J. Gonzalez-Álvarez, F. Lopez-Suevos, S. Freire, and G. Antorrena. 2002. Curing kinetics of tannin–Phenol–Formaldehyde adhesives as determined by DSC. Journal of Thermal Analysis and Calorimetry 70:19–28. doi:10.1023/A:1020680928311.
  • Vinod, A., R. Vijay, and D. L. Singaravelu. 2018. Thermomechanical characterization of calotropis gigantea stem powder-filled jute fiber-reinforced epoxy composites. Journal of Natural Fibers 15 (5):648–57. doi:10.1080/15440478.2017.1354740.
  • Voller, G. P., M. Tivoric, R. Morris, and P. Gibbens. 2003. Analysis of automotive disc brake cooling characteristics. Journal of Automobile Engineering 217:657–66. doi:10.1243/09544070360692050.
  • Wei, B., H. L. Cao, and S. H. Song. 2011. Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater. Corrosion Science 53 (1):426–31. doi:10.1016/j.corsci.2010.09.053.
  • Yoonessi, M., H. Toghiani, R. Wheeler, L. Porcar, S. Kline, and C. U. Pittman. 2008. Neutron scattering, electron microscopy and dynamic mechanical studies of carbon nanofiber/phenolic resin composites. Carbon 46:577–88. doi:10.1016/j.carbon.2008.01.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.