265
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Tailoring Chemical, Physical, and Morphological Properties of Sugarcane Bagasse Cellulose Nanocrystals via Phosphorylation Method

& ORCID Icon

References

  • Abdel-Halim, E. S. 2014. Chemical modification of cellulose extracted from sugarcane bagasse: Preparation of hydroxyethyl cellulose. Arabian Journal of Chemistry 7:362‒371.
  • Abdulkhani, A., J. Hosseinzadeh, A. Ashori, S. Dadashi, and Z. Takzare. 2014. Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polymer Testing 35:73‒79.
  • Božič, M., P. Liu, A. P. Mathew, and V. Kokol. 2014. Enzymatic phosphorylation of cellulose nanofibers to new highly-ions adsorbing, flame-retardant and hydroxyapatite-growth induced natural nanoparticles. Cellulose 21:2713‒2726.
  • Brow, R. K. 1996. An XPS study of oxygen bonding in zinc phosphate and zinc borophosphate glasses. Journal of Non-crystalline Solids 194:267‒273.
  • Camarero Espinosa, S., T. Kuhnt, E. J. Foster, and C. Weder. 2013. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14:1223‒1230.
  • Candido, R. G., G. G. Godoy, and A. R. Gonçalves. 2017. Characterization and application of cellulose acetate synthesized from sugarcane bagasse. Carbohydrate Polymers 167:280‒289.
  • Chen, W. H., S. C. Ye, and H. K. Sheen. 2012. Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Applied Energy 93:237‒244.
  • Chen, Y. W., H. V. Lee, J. C. Juan, and S. M. Phang. 2016. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydrate Polymers 151:1210‒1219.
  • Chieng, B. W., S. H. Lee, N. A. Ibrahim, Y. Y. Then, and Y. Y. Loo. 2017. Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber. Polymers 9:355. doi:10.3390/polym9080355.
  • Corrales, R. C. N. R., F. M. T. Mendes, C. C. Perrone, C. Sant’Anna, W. de Souza, Y. Abud, E. P. P. da Silva Bon, and V. Ferreira-Leitão. 2012. Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO2 and SO2. Biotechnology for Biofuels 5:36. doi:10.1186/1754-6834-5-36.
  • de Carvalho, D. M., A. Martínez-Abad, D. V. Evtuguin, J. L. Colodette, M. E. Lindström, F. Vilaplana, and O. Sevastyanova. 2017. Isolation and characterization of acetylated glucuronoarabinoxylan from sugarcane bagasse and straw. Carbohydrate Polymers 156:223‒234.
  • de Oliveira, F. B., J. Bras, M. T. B. Pimenta, A. A. da Silva Curvelo, and M. N. Belgacem. 2016. Production of cellulose nanocrystals from sugarcane bagasse fibers and pith. Industrial Crops and Products 93:48‒57.
  • Dhar, P., S. M. Bhasney, A. Kumar, and V. Katiyar. 2016. Acid functionalized cellulose nanocrystals and its effect on mechanical, thermal, crystallization and surfaces properties of poly (lactic acid) bionanocomposites films: A comprehensive study. Polymer 101:75‒92.
  • Ferrer, A., L. Pal, and M. Hubbe. 2017. Nanocellulose in packaging: Advances in barrier layer technologies. Industrial Crops and Products 95:574–582.
  • Gabov, K., J. Hemming, and P. Fardim. 2017. Sugarcane bagasse valorization by fractionation using a water-based hydrotropic process. Industrial Crops and Products 108:495‒504.
  • George, J., and S. N. Sabapathi. 2015. Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnology, Science and Applications 8:45‒54.
  • Ghanadpour, M., B. Wicklein, F. Carosio, and L. Wågberg. 2018. All-natural and highly flame-resistant freeze-cast foams based on phosphorylated cellulose nanofibrils. Nanoscale 10:4085‒4095.
  • Granados, D. A., R. A. Ruiz, L. Y. Vega, and F. Chejne. 2017. Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process. Energy 139:818‒827.
  • Granja, P. L., L. Pouysegu, D. Deffieux, G. Daude, B. De Jeso, C. Labrugere, C. Baquey, and M. A. Barbosa. 2001. Cellulose phosphates as biomaterials. II. Surface chemical modification of regenerated cellulose hydrogels. Journal of Applied Polymer Science 82:3354‒3365.
  • Haniffa, M. A. C. M., Y. C. Ching, C. H. Chuah, K. Y. Ching, N. Nazri, L. C. Abdullah, and L. Nai-Shang. 2017. Effect of TEMPO-oxidization and rapid cooling on thermo-structural properties of nanocellulose. Carbohydrate Polymers 173:91‒99.
  • Hu, Y., L. Tang, Q. Lu, S. Wang, X. Chen, and B. Huang. 2014. Preparation of cellulose nanocrystals and carboxylated cellulose nanocrystals from borer powder of bamboo. Cellulose 21:1611‒1618. doi:10.1007/s10570-014-0236-0.
  • Hu, Y., S. Li, T. Jackson, H. Moussa, and N. Abidi. 2016. Preparation, characterization, and cationic functionalization of cellulose-based aerogels for wastewater clarification. Journal of Materials 2016:10. https://doi.org/10.1155/2016/3186589.
  • Jastrzębski, W., M. Sitarz, M. Rokita, and K. Bułat. 2011. Infrared spectroscopy of different phosphates structures. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 79:722‒727.
  • Ko, S. W., J. P. E. Soriano, A. R. Unnithan, J. Y. Lee, C. H. Park, and C. S. Kim. 2018. Development of bioactive cellulose nanocrystals derived from dominant cellulose polymorphs I and II from Capsosiphon Fulvescens for biomedical applications. International Journal of Biological Macromolecules 110:531‒539.
  • Kokol, V., M. Božič, R. Vogrinčič, and A. P. Mathew. 2015. Characterisation and properties of homo-and heterogenously phosphorylated nanocellulose. Carbohydrate Polymers 125:301‒313.
  • Kumar, A., Y. S. Negi, V. Choudhary, and N. K. Bhardwaj. 2014. Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry 2:1‒8.
  • Lai, L. W., and A. Idris. 2013. Disruption of oil palm trunks and fronds by microwave-alkali pretreatment. BioResources 8:2792‒2804.
  • Lee, H. V., S. B. A. Hamid, and S. K. Zain. 2014. Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. The Scientific World Journal 2014:20. https://doi.org/10.1155/2014/631013
  • Lisdayana, N., F. Fahma, T. C. Sunarti, and E. S. Iriani. 2018. Thermoplastic starch–PVA nanocomposite films reinforced with nanocellulose from oil palm empty fruit bunches (OPEFBs): Effect of starch type. Journal of Natural Fibers Published Online 27 (Dec):2018. doi:10.1080/15440478.2018.1558142.
  • Majjane, A., A. Chahine, M. Et-tabirou, B. Echchahed, T. O. Do, and P. Mc Breen. 2014. X-ray photoelectron spectroscopy (XPS) and FTIR studies of vanadium barium phosphate glasses. Materials Chemistry and Physics 143:779‒787.
  • Mandal, A., and D. Chakrabarty. 2011. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers 86:1291‒1299.
  • Maschio, L. J., P. H. Fernandes Pereira, and M. L. C. P. da Silva. 2012. Preparation and characterization of cellulose/hydrous niobium oxide hybrid. Carbohydrate Polymers 89:992‒996.
  • Miyamoto, T., A. Mihashi, M. Yamamura, Y. Tobimatsu, S. Suzuki, R. Takada, Y. Kobayashi, and T. Umezawa. 2018. Comparative analysis of lignin chemical structures of sugarcane bagasse pretreated by alkaline, hydrothermal, and dilute sulfuric acid methods. Industrial Crops and Products 121:124‒131.
  • Ng, H. M., L. T. Sin, T. T. Tee, S. T. Bee, D. Hui, C. Y. Low, and A. R. Rahmat. 2015. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering 75:176‒200.
  • Pereira, P. H. F., H. J. C. Voorwald, M. O. H. Cioffi, M. L. C. P. Da Silva, A. M. B. Rego, A. M. Ferraria, and M. N. De Pinho. 2014. Sugarcane bagasse cellulose fibres and their hydrous niobium phosphate composites: Synthesis and characterization by XPS, XRD and SEM. Cellulose 21:641‒652.
  • Phanthong, P., G. Guan, and A. Abudula. 2015. Extraction of nanocellulose from raw apple stem. Journal of the Japan Institute of Energy 94:787‒793.
  • Phanthong, P., G. Guan, Y. Ma, X. Hao, and A. Abudula. 2016. Effect of ball milling on the production of nanocellulose using mild acid hydrolysis method. Journal of the Taiwan Institute of Chemical Engineers 60:617‒622.
  • Phan-Xuan, T., A. Thuresson, M. Skepö, A. Labrador, R. Bordes, and A. Matic. 2016. Aggregation behavior of aqueous cellulose nanocrystals: The effect of inorganic salts. Cellulose 23:3653‒3663.
  • Popescu, C. M., M. C. Popescu, G. Singurel, C. Vasile, D. S. Argyropoulos, and S. Willfor. 2007. Spectral characterization of eucalyptus wood. Applied Spectroscopy 61:1168‒1177.
  • Rani, A., S. Monga, M. Bansal, and A. Sharma. 2018. Bionanocomposites reinforced with cellulose nanofibers derived from sugarcane bagasse. Polymer Composites 39:E55‒E64.
  • Raskar, D., M. T. Rinke, and H. Eckert. 2008. The mixed-network former effect in phosphate glasses: NMR and XPS studies of the connectivity distribution in the glass system (NaPO3)1−x (B2O3)x. The Journal of Physical Chemistry C 112:12530‒12539.
  • Razali, N., M. S. Hossain, O. A. Taiwo, M. Ibrahim, N. W. M. Nadzri, N. Razak, N. F. M. Rawi, M. M. Mahadar, and M. H. M. Kassim. 2017. Influence of acid hydrolysis reaction time on the isolation of cellulose nanowhiskers from oil palm empty fruit bunch microcrystalline cellulose. BioResources 12:6773‒6788.
  • Romero, I. H., J. R. L. Camacho, R. E. C. Bermúdez, F. S. Reyes, E. G. Santiago, C. M. C. Ramón, L. R. Velasco, and J. E. E. Martínez. 2016. Synthesis and characterization of organic bio-absorbents coming from sugarcane bagasse. Journal of Surface Engineered Materials and Advanced Technology 6:125‒133.
  • Sofla, M. R. K., R. J. Brown, T. Tsuzuki, and T. J. Rainey. 2016. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Advances in Natural Sciences: Nanoscience and Nanotechnology 7 (035004):1‒9.
  • Vanderfleet, O. M., D. A. Osorio, and E. D. Cranston. 2018. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376:20170041. doi:10.1098/rsta.2017.0041.
  • Yongvanich, N. 2015. Isolation of nanocellulose from pomelo fruit fibers by chemical treatments. Journal of Natural Fibers 12:323‒331. doi:10.1080/15440478.2014.920286.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.