247
Views
19
CrossRef citations to date
0
Altmetric
Research Article

A Comprehensive Physical, Chemical and Morphological Characterization of Novel Cellulosic Fiber Extracted from the Stem of Elettaria Cardamomum Plant

, , ORCID Icon & ORCID Icon

References

  • Abral, H., A. Basri, F. Muhammad, Y. Fernando, F. Hafizulhaq, M. Mahardika, E. Sugiarti, S. M. Sapuan, R. A. Ilyas, and I. Stephane. 2019. A simple method for improving the properties of the sago starch films prepared by using ultrasonication treatment. Food Hydrocolloids 93 (August):276–83. doi:10.1016/j.foodhyd.2019.02.012.
  • Abral, H., J. Ariksa, M. Mahardika, D. Handayani, I. Aminah, N. Sandrawati, A. B. Pratama, N. Fajri, S. M. Sapuan, and R. A. Ilyas. 2020. Transparent and antimicrobial cellulose film from ginger nanofiber. Food Hydrocolloids 98 (January):105266.
  • Ahmad, R., S. Mohd, R. Ibrahim, H. Abral, M. R. Ishak, E. S. Zainudin, E. Syafri, M. Asrofi, M. S. N. Atikah, H. S. Nasmi, M. R. M. Huzaifah, A. M. Radzi, R. Jumaidin, and A. M. N. Azammi. 2019. Sugar palm (arenga pinnata (wurmb .) merr) cellulosic fibre hierarchy : A comprehensive approach from macro to nano scale. Integrative Medicine Research 8 (3):2753–66. doi:10.1016/j.jmrt.2019.04.011..
  • Ahmed, M. J., M. A. Sai Balaji, S. S. Saravanakumar, M. R. Sanjay, and P. Senthamaraikannan. 2019. characterization of areva javanica fiber – a possible replacement for synthetic acrylic fiber in the disc brake pad. Journal of Industrial Textiles 49 (3):294–317. doi:10.1177/1528083718779446.
  • Arthanarieswaran, V. P., A. Kumaravel, and S. S. Saravanakumar. 2015. Physico-chemical properties of alkali-treated acacia leucophloea fibers. International Journal of Polymer Analysis and Characterization 20 (8):704–13. doi:10.1080/1023666X.2015.1081133.
  • Balaji, M. A. S., and K. Kalaichelvan. 2012. Experimental studies of various reinforcing fibres in automotive disc brake pad on friction stability, thermal stability and wear. International Journal of Materials and Product Technology 45 (1–4):132. doi:10.1504/IJMPT.2012.051348.
  • Baskaran, P. G., M. Kathiresan, P. Senthamaraikannan, and S. S. Saravanakumar. 2018. Characterization of new natural cellulosic fiber from the bark of dichrostachys cinerea. Journal of Natural Fibers 15 (1):62–68. doi:10.1080/15440478.2017.1304314.
  • Belouadah, Z., A. Ati, and M. Rokbi. 2015. Characterization of new natural cellulosic fiber from lygeum. Carbohydrate Polymers 134:429–37. doi:10.1016/j.carbpol.2015.08.024.
  • Fiore, V., T. Scalici, and A. Valenza. 2014. Characterization of a new natural fiber from Arundo Donax L. as potential reinforcement of polymer composites. Carbohydrate Polymers 106 (1):77–83. doi:10.1016/j.carbpol.2014.02.016.
  • Hajiha, H., M. Sain, and L. H. Mei. 2014. Modification and characterization of hemp and sisal fibers. Journal of Natural Fibers 11 (2):144–68. doi:10.1080/15440478.2013.861779.
  • Halimatul, M. J., S. M. Sapuan, and M. Jawaid. 2019. Water absorption and water solubility properties of sago starch biopolymer composite films filled with sugar palm particles. Polimery 64 (09):596–604. doi:10.14314/polimery.2019.9.4.
  • Ilyas, R. A., S. M. Sapuan, and M. R. Ishak. 2018. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (arenga pinnata). Carbohydrate Polymers 181 (February):1038–51. doi:10.1016/j.carbpol.2017.11.045..
  • Ilyas, R. A., S. M. Sapuan, M. R. Ishak, and E. S. Zainudin. 2018a. Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydrate Polymers 202:186–202. doi:10.1016/j.carbpol.2018.09.002.
  • Ilyas, R. A., S. M. Sapuan, M. R. Ishak, and E. S. Zainudin. 2018b. Sugar palm nanocrystalline cellulose reinforced sugar palm starch composite: degradation and water-barrier properties. IOP Conference Series: Materials Science and Engineering 368 (June):012006. doi:10.1088/1757-899X/368/1/012006.
  • Ilyas, R. A., S. M. Sapuan, M. R. Ishak, and E. S. Zainudin. 2018c. Water transport properties of bio-nanocomposites reinforced by sugar palm (Arenga Pinnata) nanofibrillated cellulose. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 51 (2):234–46.
  • Ilyas, R. A., S. M. Sapuan, M. R. Ishak, and E. S. Zainudin. 2019. sugar palm nanofibrillated cellulose (arenga pinnata (wurmb.) merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior. International Journal of Biological Macromolecules 123 (February):379–88. doi:10.1016/j.ijbiomac.2018.11.124.
  • Indran, S., and R. Edwin Raj. 2015. Characterization of new natural cellulosic fiber from cissus quadrangularis stem. Carbohydrate Polymers 117 (March):392–99. doi:10.1016/j.carbpol.2014.09.072.
  • Jayaramudu, J., B. R. Guduri, and A. Varada Rajulu. 2010. Characterization of new natural cellulosic fabric grewia tilifolia. Carbohydrate Polymers 79 (4):847–51. doi:10.1016/j.carbpol.2009.10.046.
  • Kathirselvam, M., A. Kumaravel, V. P. Arthanarieswaran, and S. S. Saravanakumar. 2019. Characterization of cellulose fibers in thespesia populnea barks: influence of alkali treatment. Carbohydrate Polymers. doi:10.1016/j.carbpol.2019.04.063.
  • Maache, M., A. Bezazi, S. Amroune, F. Scarpa, and A. Dufresne. 2017. Characterization of a novel natural cellulosic fiber from juncus effusus. Carbohydrate Polymers 171:163–72. doi:10.1016/j.carbpol.2017.04.096.
  • Maheshwaran, M. V., N. R. J. Hyness, P. Senthamaraikannan, S. S. Saravanakumar, and M. R. Sanjay. 2018. Characterization of natural cellulosic fiber from epipremnum aureum stem. Journal of Natural Fibers 15 (6):789–98. doi:10.1080/15440478.2017.1364205.
  • Manimaran, P., P. Senthamaraikannan, M. R. Sanjay, M. K. Marichelvam, and M. Jawaid. 2017. Study on characterization of furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydrate Polymers. doi:10.1016/j.carbpol.2017.11.099.
  • Md Ahmed, J., S. Balaji, S. R. Balachandran, and Y. Liu. 2019. Characterization of alkaline treated areva javanica fiber and its tribological performance in phenolic friction composites. Materials Research Express. doi:10.1088/2053-1591/ab43ad.
  • Moriana, R., F. Vilaplana, S. Karlsson, and A. Ribes. 2014. Correlation of chemical, structural and thermal properties of natural fibres for their sustainable exploitation. Carbohydrate Polymers 112:422–31. doi:10.1016/j.carbpol.2014.06.009.
  • Nair, K. P. P. 2004. The agronomy and economy of black pepper (piper nigrum l.)-The” king of Spices”. Advances in Agronomy 82:273–392.
  • Rajan, B. S., M. A. S. Balaji, and M. A. B. Aslam Noorani. 2019. Effect of silane surface treatment on the physico-mechanical properties of shell powder reinforced epoxy modified phenolic friction composite. Materials Research Express 6 (6):065315. doi:10.1088/2053-1591/ab0ca5.
  • Rajan, B. S., M. A. S. Balaji, and S. S. Saravanakumar. 2018. Effect of chemical treatment and fiber loading on physico-mechanical properties of prosopis juliflora fiber reinforced hybrid friction composite. Materials Research Express 6 (3):35302. doi:10.1088/2053-1591/aaf3cf.
  • Ramanaiah, K., A. V. Ratna Prasad, and K. H. C. Reddy. 2011. Thermal and mechanical properties of sansevieria green fiber reinforcement. International Journal of Polymer Analysis and Characterization 16 (8):602–08. doi:10.1080/1023666X.2011.622358.
  • Ramasamy, R., K. Obi Reddy, and A. Varada Rajulu. 2018. Extraction and characterization of calotropis gigantea bast fibers as novel reinforcement for composites materials. Journal of Natural Fibers 15 (4):527–38. doi:10.1080/15440478.2017.1349019.
  • Rashid, B., Z. Leman, M. Jawaid, M. J. Ghazali, and M. R. Ishak. 2016. Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: Effect of treatment. Cellulose 23 (5):2905–16. doi:10.1007/s10570-016-1005-z.
  • Reddy, K. O., C. U. Maheswari, E. Muzenda, M. Shukla, and A. Varada Rajulu. 2016. Extraction and characterization of cellulose from pretreated ficus (Peepal Tree) Leaf Fibers. Journal of Natural Fibers 13 (1):54–64. doi:10.1080/15440478.2014.984055.
  • Sakji, N., M. Jabli, F. Khoffi, N. Tka, R. Zouhaier, W. Ibala, H. Mohamed, and B. Durand. 2016. Physico-chemical characteristics of a seed fiber arised from pergularia tomentosa L. Fibers and Polymers 17 (12):2095–104. doi:10.1007/s12221-016-6461-4.
  • Sanjay, S. S., J. Parameswaranpillai, M. Jawaid, C. I. Pruncu, and A. Khan. 2018. A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohydrate Polymers 207:108–21. (November 2018). doi:10.1016/j.carbpol.2018.11.083.
  • Sanyang, M. L., R. A. Ilyas, S. M. Sapuan, and R. Jumaidin. 2018. Sugar palm starch-based composites for packaging applications. Bionanocomposites for Packaging Applications 125–47. https://doi.org/10.1007/978-3-319-67319-6_7
  • Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, P. Sudhakar, and R. Baskaran. 2013. Characterization of a novel natural cellulosic fiber from prosopis juliflora bark. Carbohydrate Polymers 92 (2):1928–33. doi:10.1016/j.carbpol.2012.11.064.
  • Senthamaraikannan, P., and M. Kathiresan. 2018. Characterization of raw and alkali treated new natural cellulosic fiber from coccinia grandis.L. Carbohydrate Polymers 186:332–43. doi:10.1016/j.carbpol.2018.01.072.
  • Singha, A. S., V. K. Thakur, I. K. Mehta, A. Shama, A. J. Khanna, R. K. Rana, and A. K. Rana. 2009. Surface-modified hibiscus sabdariffa fibers: Physicochemical, thermal, and morphological properties evaluation. International Journal of Polymer Analysis and Characterization 14 (8):695–711. doi:10.1080/10236660903325518.
  • Sreenivasan, V. S., D. Ravindran, V. Manikandan, and R. Narayanasamy. 2012. Influence of fibre treatments on mechanical properties of short sansevieria cylindrica/polyester composites. Materials and Design 37:111–21. doi:10.1016/j.matdes.2012.01.004.
  • Sreenivasan, V. S., S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy. 2011. Microstructural, physico-chemical and mechanical characterisation of sansevieria cylindrica fibres - an exploratory investigation. Materials and Design 32 (1):453–61. doi:10.1016/j.matdes.2010.06.004.
  • Surya Rajan, B., M. A. Saibalaji, and S. Rasool Mohideen. 2019. Tribological performance evaluation of epoxy modified phenolic FC reinforced with chemically modified prosopis juliflora bark fiber. Materials Research Express 6 (7):075313. doi:10.1088/2053-1591/ab07e6.
  • Surya Rajan, B., M. A. S. Balaji, A. B. M. A. Noorani, M. U. H. Khateeb, P. Hariharasakthisudan, and P. A. Doss. 2019. Tribological performance evaluation of newly synthesized silane treated shell powders in friction composites. Materials Research Express 6 (6):065317. doi:10.1088/2053-1591/ab08e0..
  • Suryanto, H., E. Marsyahyo, Y. S. Irawan, and R. Soenoko. 2014. Morphology, structure, and mechanical properties of natural cellulose fiber from mendong grass (Fimbristylis Globulosa). Journal of Natural Fibers 11 (4):333–51. doi:10.1080/15440478.2013.879087.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.