321
Views
47
CrossRef citations to date
0
Altmetric
Research Article

Physical, Chemical, Thermal, and Surface Morphological Properties of the Bark Fiber Extracted from Acacia Concinna Plant

&

References

  • Ahmed, M. J., M. A. S. Balaji, S. S. Saravanakumar, M. R. Sanjay, and P. Senthamaraikannan. 2018. Characterization of areva javanica fiber – a possible replacement for synthetic acrylic fiber in the disc brake pad. Journal of Industrial Textiles. doi:10.1177/1528083718779446.
  • Ali, M. 2016. Microstructure, thermal analysis and acoustic characteristics of calotropis procera (Apple of Sodom) fibers. Journal of Natural Fibers 13 (3):343–52. doi:10.1080/15440478.2015.1029198.
  • Arthanarieswaran, V. P., A. Kumaravel, M. Kathirselvam, and S. S. Saravanakumar. 2016. Mechanical and thermal properties of acacia leucophloea fiber/epoxy composites: Influence of fiber loading and alkali treatment. International Journal of Polymer Analysis and Characterization 21 (7):571–83. doi:10.1080/1023666X.2016.1183279.
  • Arul Marcel, M. A., D. Ravindran, S. R. Sundara Bharathi, S. Indran, S. S. Saravanakumar, and Y. Liu. 2019. Characterization of a new cellulosic natural fiber extracted from the root of ficus religiosa tree. International Journal of Biological Macromolecules (September). doi:10.1016/J.IJBIOMAC.2019.09.094.
  • Balaji, A. N., and K. J. Nagarajan. 2017. Characterization of alkali treated and untreated new cellulosic fiber from saharan aloe vera cactus leaves. Carbohydrate Polymers 174:200–08. doi:10.1016/j.carbpol.2017.06.065.
  • Belouadah, Z., A. Ati, and M. Rokbi. 2015. Characterization of new natural cellulosic fiber from Lygeum Spartum L. Carbohydrate Polymers 134 (July 2016):429–37. doi:10.1016/j.carbpol.2015.08.024.
  • Broido, A. 1969. A simple, sensitive graphical method of treating thermogravimetric analysis data. Journal of Polymer Science Part A-2: Polymer Physics 7 (10):1761–73. doi:10.1002/pol.1969.160071012.
  • Chand, N., and R. Joshi. 2010. Analysis of mechanical, thermal, and dynamic mechanical behaviors of different polymer-coated sisal fibers. Journal of Natural Fibers 7 (2):100–10. doi:10.1080/15440478.2010.481117.
  • Chandrasekar, M., M. R. Ishak, S. M. Sapuan, Z. Leman, and M. Jawaid. 2017. A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plastics, Rubber and Composites 46 (3):119–36. doi:10.1080/14658011.2017.1298550.
  • Chonsakorn, S., S. Srivorradatpaisan, and R. Mongkholrattanasit. 2018. Effects of different extraction methods on some properties of water hyacinth fiber. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2018.1448316.
  • Conrad, C. M. 1944. Determination of wax in cotton fiber a new alcohol extraction method. Industrial & Engineering Chemistry Analytical Edition 16 (12):745–48. doi:10.1021/i560136a007.
  • Ganapathy, T., R. Sathiskumar, P. Senthamaraikannan, S. S. Saravanakumar, and A. Khan. 2019. Characterization of raw and alkali treated new natural cellulosic Fi Bres extracted from the aerial roots of banyan tree. International Journal of Biological Macromolecules 138:573–81. doi:10.1016/j.ijbiomac.2019.07.136.
  • Gurukarthik Babu, B., D. Princewinston, P. SenthamaraiKannan, S. S. Saravanakumar, and M. R. Sanjay. 2018. Study on characterization and physicochemical properties of new natural fiber from phaseolus vulgaris. Journal of Natural Fibers 1–8. doi:10.1080/15440478.2018.1448318.
  • Hajiha, H., M. Sain, and L. H. Mei. 2014. Modification and characterization of hemp and sisal fibers. Journal of Natural Fibers 11 (2):144–68. doi:10.1080/15440478.2013.861779.
  • Indran, S., and R. Edwin Raj. 2015. Characterization of new natural cellulosic fiber from cissus quadrangularis stem. Carbohydrate Polymers 117:392–99. doi:10.1016/j.carbpol.2014.09.072.
  • Jayaramudu, J., A. Maity, E. R. Sadiku, B. R. Guduri, A. Varada Rajulu, C. V. V. Ramana, and R. Li. 2011. Structure and properties of new natural cellulose fabrics from cordia dichotoma. Carbohydrate Polymers 86 (4):1623–29. doi:10.1016/j.carbpol.2011.06.071.
  • Jayaramudu, J., B. R. Guduri, and A. Varada Rajulu. 2010. Characterization of new natural cellulosic fabric grewia tilifolia. Carbohydrate Polymers 79 (4):847–51. doi:10.1016/j.carbpol.2009.10.046.
  • Kathirselvam, M., A. Kumaravel, V. P. Arthanarieswaran, and S. S. Saravanakumar. 2019a. Assessment of cellulose in bark fibers of thespesia populnea: Influence of stem maturity on fiber characterization. Carbohydrate Polymers 212:439–49. doi:10.1016/j.carbpol.2019.02.072.
  • Kathirselvam, M., A. Kumaravel, V. P. Arthanarieswaran, and S. S. Saravanakumar. 2019b. Characterization of cellulose fibers in thespesia populnea barks: Influence of alkali treatment. Carbohydrate Polymers. doi:10.1016/j.carbpol.2019.04.063.
  • Liu, Y., J. Xie, W. Na, M. Yunhai, C. Menon, and J. Tong. 2019a. Characterization of natural cellulose fiber from corn stalk waste subjected to different surface treatments. Cellulose 6. doi:10.1007/s10570-019-02429-6.
  • Liu, Y., L. Xueman, J. Bao, J. Xie, X. Tang, J. Che, M. Yunhai, and J. Tong. 2019b. Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites. Carbohydrate Polymers. doi:10.1016/j.carbpol.2019.04.088.
  • Madhu, P., M. R. Sanjay, P. Senthamaraikannan, S. Pradeep, S. Siengchin, M. Jawaid, and M. Kathiresan. 2018. Effect of various chemical treatments of prosopis juliflora fibers as composite reinforcement: Physicochemical, thermal, mechanical, and morphological properties. Journal of Natural Fibers 1–12. doi:10.1080/15440478.2018.1534191.
  • Maheshwaran, M. V., N. Rajesh Jesudoss Hyness, P. Senthamaraikannan, S. S. Saravanakumar, and M. R. Sanjay. 2018. Characterization of natural cellulosic fiber from epipremnum aureum stem. Journal of Natural Fibers 15 (6):789–98. doi:10.1080/15440478.2017.1364205.
  • Manimaran, P., M. R. Sanjay, P. Senthamaraikannan, B. Yogesha, C. Barile, and S. Siengchin. 2018a. A new study on characterization of pithecellobium dulce fiber as composite reinforcement for light-Weight Applications. Journal of Natural Fibers 1–12. doi:10.1080/15440478.2018.1492491.
  • Manimaran, P., P. Senthamaraikannan, M. R. Sanjay, and C. Barile. 2018b. Comparison of Fibres Properties of Azadirachta Indica and Acacia Arabica Plant for Lightweight Composite Applications. Structural Integrity and Life 18 (1):37–43.
  • Milani, M. D. Y., D. S. Samarawickrama, G. P. C. A. Dharmasiri, and I. R. M. Kottegoda. 2016. Study the Structure, Morphology, and Thermal Behavior of Banana Fiber and Its Charcoal Derivative from Selected Banana Varieties. Journal of Natural Fibers 13 (3):332–42. doi:10.1080/15440478.2015.1029195.
  • Nijandhan, K., R. Muralikannan, and S. Venkatachalam. 2018. Ricinus Communis Fiber as Potential Reinforcement for Lightweight Polymer Composites. Materials Research Express 5:9. doi:10.1088/2053-1591/aad617.
  • Obi, R. K., C. Uma Maheswari, E. Muzenda, M. Shukla, and A. Varada Rajulu. 2016. Extraction and Characterization of Cellulose from Pretreated Ficus (Peepal Tree) Leaf Fibers. Journal of Natural Fibers 13 (1):54–64. doi:10.1080/15440478.2014.984055.
  • Rajeshkumar, G., V. Hariharan, and T. Scalici. 2016. Effect of NaOH Treatment on Properties of Phoenix Sp. Fiber. Journal of Natural Fibers 13 (6):702–13. doi:10.1080/15440478.2015.1130005.
  • Ramasamy, R., K. Obi Reddy, and A. Varada Rajulu. 2018. Extraction and Characterization of Calotropis Gigantea Bast Fibers as Novel Reinforcement for Composites Materials. Journal of Natural Fibers 15 (4):527–38. doi:10.1080/15440478.2017.1349019.
  • Reddy, K., K. Obi, R. N. Reddy, J. Zhang, J. Zhang, and A. Varada Rajulu. 2013. Effect of Alkali Treatment on the Properties of Century Fiber. Journal of Natural Fibers 10 (3):282–96. doi:10.1080/15440478.2013.800812.
  • Rwawiire, S., and B. Tomkova. 2015. Morphological, thermal, and mechanical characterization of sansevieria trifasciata fibers. Journal of Natural Fibers 12 (3):201–10. doi:10.1080/15440478.2014.914006.
  • Sanjay, M. R., P. Madhu, P. Mohammad Jawaid, S. S. Senthil, and S. Pradeep. 2018. Characterization and properties of natural fiber polymer composites: a comprehensive review. Journal of Cleaner Production 172:566–81. doi:10.1016/j.jclepro.2017.10.101.
  • Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, and I. Ganesh Moorthy. 2014. Investigation of physico-chemical properties of alkali-treated prosopis juliflora fibers. International Journal of Polymer Analysis and Characterization 19 (4):309–17. doi:10.1080/1023666X.2014.902527.
  • Sathishkumar, T. P., P. Navaneethakrishnan, S. Shankar, and R. Rajasekar. 2013. Characterization of new cellulose sansevieria ehrenbergii fibers for polymer composites. Composite Interfaces 20 (8):575–93. doi:10.1080/15685543.2013.816652.
  • Segal, L., J. J. Creely, A. E. Martin, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29 (10):786–94. doi:10.1177/004051755902901003.
  • Senthamaraikannan, P., and M. Kathiresan. 2018. Characterization of raw and alkali treated new natural cellulosic fiber from coccinia grandis.L. Carbohydrate Polymers 186:332–43. doi:10.1016/j.carbpol.2018.01.072.
  • Senthamaraikannan, P., S. S. Saravanakumar, V. P. Arthanarieswaran, and P. Sugumaran. 2016. Physico-chemical properties of new cellulosic fibers from the bark of acacia planifrons. International Journal of Polymer Analysis and Characterization 21 (3):207–13. doi:10.1080/1023666X.2016.1133138.
  • Shanmugasundaram, N., I. Rajendran, and T. Ramkumar. 2018. Characterization of untreated and alkali treated new cellulosic fiber from an areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydrate Polymers 195:566–75. doi:10.1016/j.carbpol.2018.04.127.
  • Siengchin, S. 2017. Editorial corner - a personal view potential use of ‘green’ composites in automotive applications. Express Polymer Letters 11 (8):600. doi:10.3144/expresspolymlett.2017.57.
  • Sreenivasan, V. S., D. Ravindran, V. Manikandan, and R. Narayanasamy. 2011a. Mechanical properties of randomly oriented short sansevieria cylindrica fibre/polyester composites. Materials and Design 32 (4):2444–55. doi:10.1016/j.matdes.2010.11.042.
  • Sreenivasan, V. S., S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy. 2011. Microstructural, physico-chemical and mechanical characterisation of sansevieria cylindrica fibres - an exploratory investigation. Materials & Design 32 (1):453–61. doi: 10.1016/j.matdes.2010.06.004.
  • Suryanto, H., E. Marsyahyo, Y. S. Irawan, and R. Soenoko. 2014. Morphology, structure, and mechanical properties of natural cellulose fiber from mendong grass (Fimbristylis Globulosa). Journal of Natural Fibers 11 (4):333–51. doi:10.1080/15440478.2013.879087.
  • Umashankaran, M., and S. Gopalakrishnan. 2019. Characterization of bio-fiber from pongamiapinnata L. Bark as possible reinforcement of polymer composites. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2019.1658254.
  • Vijay, R., D. Lenin Singaravelu, A. Vinod, M. R. Sanjay, S. Siengchin, M. Jawaid, A. Khan, and J. Parameswaranpillai. 2019. Characterization of raw and alkali treated new natural cellulosic fibers from tridax procumbens. International Journal of Biological Macromolecules 125:99–108. doi:10.1016/j.ijbiomac.2018.12.056.
  • Wise, L. E., M. Murphy, and A. A. D'Addieco. 1946. Paper Trade J 122 2:35.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.