285
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Simple and Easily Applicable Method for Reducing Freshwater Consumption in Dyeing of Wool Fabric

, &

References

  • Abou El-Kheir, A., K. Haggag, S. Mowafi, and H. El-Sayed. 2015. Microwave-assisted leaching of wool fabric. Journal of Natural Fibres 12 (2):97–107. doi:https://doi.org/10.1080/15440478.2014.901202.
  • Asquith, R. S. 2012. Chemistry of natural protein fibres, 214–15. New York and London: Plenum Press. Chapter 5.
  • Balachandran, S., and R. Rudramoorthy. 2008. Efficient water utlisation in textile wet processing. Journal of Institution of India, Kolkata, TX 89 (August):26–29.
  • Cheremisinoff, N. P. 2001. Handbook of pollution prevention practices, 394–99. New York: Marcel Decker Inc.
  • El-Hawary, N. S., N. S. Elshemy, and H. El-Sayed. 2016. New thiol-disulfide exchangers as anti-setting agents for wool fabric during dyeing. Fibers and. Polymers 17 (9):1391–96.
  • El-Sayed, H., and E. El-Khatib. 2005. Modification of wool fabrics using ecologically acceptable UV-assisted treatments. Journal of Chemical Technology and Biotechnology 80 (10):1111–17. doi:https://doi.org/10.1002/jctb.1290.
  • El-Sayed, H., L. El-Gabry, and F. Kantouch. 2010. Effect of bio-carbonization of coarse wool on its dyeability. Indian Journal of Fibres and Textile Research 35 (4):330–36.
  • Hasanbeigi, A., and L. Price. 2015. A technical review of emerging technologies for energy and water efficiency and pollution reduction in the textile industry. Journal of Cleaner Production 95 (5):30–44. doi:https://doi.org/10.1016/j.jclepro.2015.02.079.
  • Hashem, M., M. AbouTaleb, F. N. El-Shal, and K. Haggag. 2014. New prospects in treatment of cotton fabrics using microwave heating. Carbohydrate Polymers 103 (3):385–91. doi:https://doi.org/10.1016/j.carbpol.2013.11.064.
  • Hu, E., S. Shang, X. Tao, S. Jiang, and K.-L. Chio. 2018. Minimizing freshwater consumption in the wash-off step in textile reactive dyeing by catalytic ozonation with carbon aerogel hosted bimetallic catalyst. Polymers 10 (193):1–18. doi:https://doi.org/10.3390/polym10020193.
  • Kantouch, A., F. Kantouch, and H. El-Sayed. 2006. Surface modification of wool fabric for printing with acid and reactive dyes. Coloration Technology 122 (4):213–16. doi:https://doi.org/10.1111/j.1478-4408.2006.00030.x.
  • Karmakar, S. R. 1999. Chemical technology in the pretreatment processes of textiles, 378–79. Amsterdam, the Netherland: Elsevier Science B.V. Chapter 13.
  • Kiran-Ciliz, N. 2003. Reduction in resource consumption by process modifications in cotton wet processes. Journal of Cleaner Production 11:481–86. doi:https://doi.org/10.1016/S0959-6526(02)00069-0.
  • Levene, R. 1997. Enzme-enhanced bleaching of wool. Coloration Technology 113 (7–8):206–2010.
  • Liu, K., X. Zhang, and K. Yan. 2018. Bleaching of cotton fabric with tetraacetylhydrazine as bleach activator for H2O2. Carbohydrate Polymers 188 (5):221–27. doi:https://doi.org/10.1016/j.carbpol.2018.01.111.
  • Marzouki, R., A. Brahmia, S. Bandock, S. M. A. S. Keshk, M. F. Zid, A. G. Al-Sehemi, A. Koschella, and T. Heinze. 2019. Mercerization effect on structure and electrical properties of cellulose: Development of a novel fast Na-Ionic conductor. Carbohydrate Polymers 221 (10):29–36. doi:https://doi.org/10.1016/j.carbpol.2019.05.083.
  • McDonald, R. 1997. Colour physics for industry. Cambridge, UK: Woodhead Publishing Limited.
  • Pan, Y., C. J. Hurren, and Q. Li. 2018. Effect of sonochemical scouring on the surface morphologies, mechanical properties, and dyeing abilities of wool fibres. Ultrasonic Sonochemistry 41 (3):227–33. doi:https://doi.org/10.1016/j.ultsonch.2017.09.045.
  • Parisi, M.L., E. Fatarella, D. Spinelli, R. Pogni, and R. Basosi. (2015). Environmental impact assessment of an eco-efficient production for coloured textiles. Journal of Cleaner Production 108: 514–524.
  • Rice, E. W., R. B. Baird, A. D. Eaton, and L. S. Clesceri. 2017. Standard methods for the examination of water and wastewater. 23rd ed. Washington DC: APHA (American Public Health Association), AWWA (American Water Works Association), and WEF (Water Environment Federation).
  • Shabbir, M., L. J. Rather, M. N. Bukhari, S. Ul-Islam, M. Shahid, M. A. Khan, and F. Mohammad. 2019. Light fastness and shade variability of tannin colorant dyed wool with the effect of mordanting methods. Journal of Natural Fibres 16 (1):100–13. doi:https://doi.org/10.1080/15440478.2017.1408521.
  • Sun, J., H. Wang, C. Zheng, and G. Wang. 2019. Synthesis of some surfactant-type acid dyes and their low-temperature dyeing properties on wool fibres. Journal of Cleaner Production 218 (5):284–93. doi:https://doi.org/10.1016/j.jclepro.2019.01.341.
  • Sun, S., H. Yu, T. Williams, R. F. Hicks, and Y. Qui. 2013. Eco-friendly sizing technology of cotton yarns with He/O2atmospheric pressure plasma treatment and green sizing recipes. Textile Research Journal 83 (20):2177–90. doi:https://doi.org/10.1177/0040517513490061.
  • Surpăţeanu, M., and C. Zaharia. 2004. Advanced oxidation process for decolorization of aqueous solution containing Acid Red G azo dye. Central European Journal of Chemistry 2 (4):573–88.
  • Ul-Islam, S., and F. Mohammad. 2018. Reflectance spectroscopic optimization of dyeing process and color characterization of ammonia post-treated wool dyed with tectona grandis L. leaves extract. Environmental Progress and Sustainable Energy 37 (6):1901–07.
  • Ul-Islam, S., L. J. Rather, M. Shabbir, J. Sheikh, M. N. Bukhari, M. A. Khan, and F. Mohammad. 2019. Exploiting the potential of polyphenolic biomordants in environmentally friendly coloration of wool with natural dye from Butea monosperma flower extract. Journal of Natural Fibres 16 (4):512–23. doi:https://doi.org/10.1080/15440478.2018.1426080.
  • Van Aken, P., R. Van den Broeck, J. Degrève, and R. A. Dewil. 2017. A pilot-scale coupling of ozonation and biodegradation of 2,4-dichlorophenol-containing wastewater: the effect of biomass acclimation towards chlorophenol and intermediate ozonation products. Journal Of Cleaner Production 161:1432–1441. doi:https://doi.org/10.1016/j.jclepro.2017.05.124.
  • Wang, X., X. Shen, and W. Xu. 2012. Effect of hydrogen peroxide treatment on the properties of wool fabrics. Applied Surface Science 258 (24):10012–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.