190
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Effects of Alkalization on Physical and Mechanical Properties of Biologically Degummed Okra Bast and Corn Husk Fibers

, &

References

  • ASTM D 1577 07 standard test methods for linear density of textile fibers. 2007. West Conshohocken, PA.
  • ASTM D 2495 07 standard test method for moisture in cotton by oven-drying. 2007. West Conshohocken, PA.
  • ASTM D 3822 07 standard test method for tensile properties of single textile fibers. 2007. West Conshohocken, PA.
  • Bodros, E., and C. Baley. 2008. Study of the tensile properties of stinging nettle fibres (Urtica Dioica). Materials Letters 62 (14):2143–45. doi:https://doi.org/10.1016/j.matlet.2007.11.034.
  • De Rosa, I. M., J. M. Kenny, D. Puglia, C. Santulli, and F. Sarasini. 2010. Morphological, thermal and mechanical characterization of Okra (Abelmoschus Esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology 70 (1):116–22. doi:https://doi.org/10.1016/j.compscitech.2009.09.013.
  • De Rosa, I. M., J. M. Kenny, M. Maniruzzaman, M. Moniruzzaman, M. Monti, D. Puglia, C. Santulli, and F. Sarasini. 2011. Effect of chemical treatments on the mechanical and thermal behaviour of Okra (Abelmoschus Esculentus) fibres. Composites Science and Technology 71 (2):246–54. doi:https://doi.org/10.1016/j.compscitech.2010.11.023.
  • Gañán, P., J. Cruz, S. Garbizu, A. Arbelaiz, and I. Mondragon. 2004. Stem and bunch banana fibers from cultivation wastes: effect of treatments on physico-chemical behavior. Journal of Applied Polymer Science 94 (4):1489–95. doi:https://doi.org/10.1002/app.21061.
  • Gonzales, R., E. Reguera, L. Mendoza, J. M. Figueroa, and F. Sanchez-Sinencio. 2004. Physicochemical changes in the hull of corn grains during their alkaline cooking. Journal of Agricultural and Food Chemistry 52:3831–37.
  • Islam, M. S., K. L. Pickering, and N. J. Foreman. 2011. Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. Journal of Applied Polymer Science 119 (6):3696–707.
  • Jonoobi, M., J. Harun, A. Shakeri, M. Misra, and K. Oksman. 2009. Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus Cannabinus) pulp and nanofibers. BioResources 4 (2):626–39.
  • Khan, G. M., M. S. Arifuzzaman, S. M. Abdur Razzaque, M. S. Islam, M. S. Alam, and M. M. Islam. 2009a. Grafting of acrylonitrile monomer onto bleached okra bast fibre and its textile properties. Indian Journal of Fibre and Textile Research 34 (4):321–27.
  • Khan, G. M. A., N. D. Yilmaz, and K. Yilmaz. 2017b. Recent developments in design and manufacturing of biocomposites of bombyx mori silk fibroin. In Handbook of composites from renewable materials vol 2 design and manufacturing, ed. V. K. Thakur and M. K. Thakur, 377–410. Hoboken, NJ: Wiley Scrivener.
  • Khan, G. M. A., M. H. Md Shaheruzzaman, S. M. Rahman, A. Razzaque, M. S. Islam, and M. S. Alam. 2009b. Surface modification of okra bast fiber and its physico-chemical characteristics. Fibers and Polymers 10 (1):65–70. doi:https://doi.org/10.1007/s12221-009-0065-1.
  • Khan, G. M. A., N. D. Yilmaz, and K. Yilmaz. 2017a. Okra bast fiber as potential reinforcement element of biocomposites: can it be the flax of the future. In Handbook of composites from renewable materials volume 4: “functionalization”, 379–406. Hoboken, NJ: Wiley Scrivener.
  • Khan, G. M. A., N. D. Yilmaz, and K. Yilmaz. 2019. Effects of chemical treatments and degumming methods on physical and mechanical properties of Okra Bast and Corn Husk fibers. Journal of the Textile Institute. doi:https://doi.org/10.1080/00405000.2019.1702492.
  • Lee, T. S., H. Y. Choi, H. N. Choi, K.-Y. Lee, S.-H. Kim, S. G. Lee, and K. Da Yong. 2013. Effect of surface treatment of ramie fiber on the interfacial adhesion of ramie/Acetylated Epoxidized Soybean Oil (AESO) Green Composite. Journal of Adhesion Science and Technology 27 (12):1335–47. doi:https://doi.org/10.1080/01694243.2012.697326.
  • Maize, total, production quantity (Tons) - for all countries. 2018.
  • Mangut, M., and N. Karahan. 2011. Textile fibers. 4th ed. Bursa, Turkey: Ekin Kitabevi.
  • Motaghi, Z. 2018. An economical dyeing process for cotton and wool fabrics and improvement their antibacterial properties and UV protection. Journal of Natural Fibers 15 (2):777–88.
  • Muthukumar, N., G. Thilagavathi, P. T. Neelakrishnan, and S. Poovaragan. 2019. Sound and thermal insulation properties of flax/low melt PET needle punched nonwovens. Journal of Natural Fibers 16 (2):245–52.
  • Okra, production quantity (Tons) - for all countries. 2019.
  • Oliva-taravilla, A., E. Tomás-pejó, M. Demuez, C. González-fernández, and M. Ballesteros. 2016. Effect of laccase dosage on enzymatic hydrolysis of steam-exploded wheat straw. Cellulose Chemistry and Technology 50 (3–4):391–95.
  • Peng, W., L. Wang, M. Ohkoshi, and M. Zhang. 2015. Separation of hemicelluloses from eucalyptus species : investigating the residue after alkaline treatment. Cellulose Chemistry and Technology 49 (9–10):757–64.
  • Reddy, J. P., and J.-W. Rhim. 2018. Extraction and characterization of cellulose microfibers from agricultural wastes of onion and garlic. Journal of Natural Fibers 15 (4):465–73.
  • Reddy, N., and Y. Yang. 2005. Properties and potential applications of natural cellulose fibers from cornhusks. Green Chemistry 7 (4):190–95. doi:https://doi.org/10.1016/j.carbpol.2009.03.013.
  • Saba, N., M. Jawaid, and O. Y. Alothman. 2017. Green biocomposites for structural applications green biocomposites for structural applications. In Green biocomposites, green energy and technology, ed. M. Jawaid, S. M. Sapuan, and O. Y. Alothman, 1–27. Cham, Switzerland: Springer International Publishing. doi:https://doi.org/10.1007/978-3-319-49382-4.
  • Sain, M., and S. Panthpulakkal. 2004. Green fiber thermoplastic composites. In Green composites: polymer composites and the environment, ed. C. Baillie, 181–206. England: Woodhead Publishing.
  • Sari, N. H., I. N. G. Wardana, Y. S. Irawan, and E. Siswanto. 2018. characterization of the chemical, physical, and mechanical properties of NaOH-treated natural cellulosic fibers from corn husks. Journal of Natural Fibers 15 (4):545–58.
  • Thakur, M. K., A. K. Rana, and V. K. Thakur. 2015. Lignocellulosic polymer composites: a brief overview. In Lignocellulosic polymer composites: processing, characterization, and properties, ed. V. K. Thakur, 3–16. Hoboken, NJ: Wiley Scrivener.
  • Why MAIZE. 2016.
  • Yilmaz, N. D. 2013a. Effect of chemical extraction parameters on corn husk fibres characteristics. Indian Journal of Fibre & Textile Research 38 (1):29–34.
  • Yilmaz, N. D. 2013b. Effects of enzymatic treatments on the mechanical properties of corn husk fibers. Journal of the Textile Institute 104 (4):396–406.
  • Yilmaz, N. D., S. Konak, K. Yilmaz, A. A. Kartal, and E. Kayahan. 2016. Characterization, modification and use of biomass: okra fibers. Bioinspired, Biomimetic and Nanobiomaterials. doi:https://doi.org/10.1680/jbibn.15.00014.
  • Zakriya, G. M., and G. Ramakrishnan. 2019. Jute and hollow conjugated polyester composites for outdoor & indoor insulation applications. Journal of Natural Fibers 16 (2):185–98.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.