186
Views
6
CrossRef citations to date
0
Altmetric
Research Article

The Effect of Nanofibrillated Tempo-oxidized Cotton Linters on the Strength and Optical Properties of Paper

ORCID Icon, , , ORCID Icon, &

References

  • Ämmälä, A., H. Liimatainen, C. Burmeister, and J. Niinimäki. 2013. Effect of tempo and periodate-chlorite oxidized nanofibrils on ground calcium carbonate flocculation and retention in sheet forming and on the physical properties of sheets. Cellulose 20 (5):2451–60. doi:10.1007/s10570-013-0012-6.
  • Brodin, F. W., Ø. W. Gregersen, and K. Syverud. 2014. Cellulose nanofibrils: Challenges and possibilities as a paper additive or coating material – A review. Nordic Pulp & Paper Research Journal 29 (1):156–66. doi:10.3183/npprj-2014-29-01-p156-166.
  • Camargos, C. H. M., J. C. D. Figueiredo, and F. V. Pereira. 2016. Nanocellulose for conservation and restoration of graphic documents. Experience and Evidence: , ICOM-CC Graphic Documents Working Group,  Interim Meeting 1 – 3 June 2016, French National Library, Quai François Mauriac, 75013 Paris, p. 14.
  • Camargos, C. H. M., J. C. D. Figueiredo, and F. V. Pereira. 2017. Cellulose nanocrystal-based composite for restoration of lacunae on damaged documents and artworks on paper. Journal of Cultural Heritage 23:170–75. doi:10.1016/j.culher.2016.10.007.
  • Castro, K., M. Pérez, M. D. Rodriguez-Laso, and J. M. Madariaga. 2003. FTIR spectra database of inorganic art materials. Analytical Chemistry 75 (9):9. doi:10.1021/ac031320e.
  • Chang, P. S., and J. F. Robyt. 1996. Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6-Tetramethyl-1-Piperidine Oxoammonium Ion. Journal of Carbohydrate Chemistry 15 (7):819–30. doi:10.1080/07328309608005694.
  • Chung, C., M. Lee, and E. Choe. 2004. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydrate Polymers 58 (4):417–20. doi:10.1016/j.carbpol.2004.08.005.
  • De Nooy, A. E. J., A. C. Besemer, and H. van Bekkum. 2010. Highly selective tempo mediated oxidation of primary alcohol groups in polysaccharides. Recueil Des Travaux Chimiques Des Pays-Bas 113 (3):165–66. doi:10.1002/recl.19941130307.
  • Hassan, E., M. Hassan, and K. Oksman. 2011. Improving bagasse pulp paper sheet properties with MFC isolated xylanase-treated bagasse. Wood Fiber Sci 42:979–82.
  • He, M., B.-U. Cho, and J. M. Won (2016). Effect of precipitated calcium carbonate–cellulose nanofibrils composite filler on paper properties. Carbohydrate Polymers, 136, 820–25. 10.1016/j.carbpol.2015.09.069
  • Heinze, T. 2015. Cellulose: Structure and properties. In Cellulose chemistry and properties: Fibers, nanocelluloses and advanced materials, ed. O. Rojas, 1–52. Springer, Cham. doi:10.1007/12_2015_319.
  • Honorato, C., V. Kumar, J. Liu, H. Koivula, C. Xu, and M. Toivakka. 2015. Transparent nanocellulose-pigment composite films. Journal of Materials Science 50 (22):7343–52. doi:10.1007/s10853-015-9291-7.
  • Hospodarova, V., E. Singovszka, and N. Stevulova. 2018. Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials. American Journal of Analytical Chemistry 09 (6):303–10. doi:10.4236/ajac.2018.96023.
  • Hubbe, M. A., and R. A. Gill. 2016. Fillers for papermaking: A review of their properties, usage practices, and their mechanistic role. BioResources 11 (1):1. doi:10.15376/biores.11.1.2886-2963.
  • Isko Kajanto, K. M. 2012. The potential use of micro- and nano fibrillated cellulose as a reinforcing element in paper and board based packaging. TAPPI International Conference on Nanotechnology for Renewable Materials 2 (6):42–48.
  • Isogai, A., T. Saito, and H. Fukuzumi. 2011. TEMPO-oxidized cellulose nanofibers. Nanoscale 3 (1):71–85. doi:10.1039/C0NR00583E.
  • Jin, L., W. Yanwei, X. Qinghua, Y. Wenrun, and C. Zhengliang. 2014a. Cellulose nanofibers prepared from TEMPO-oxidation of kraft pulp and its flocculation effect on kaolin clay. Journal of Applied Polymer Science. 131(12). doi:10.1002/app.40450.
  • Jin, Y., K. J. Edler, F. Marken, and J. L. Scott. 2014b. Voltammetric optimisation of TEMPO-mediated oxidations at cellulose fabric. Green Chem. 16 (6):3322–27. doi:10.1039/C4GC00306C.
  • Kargarzadeh, H., M. Mariano, D. Gopakumar, I. Ahmad, S. Thomas, A. Dufresne, J. Huang, and N. Lin. 2018. Advances in cellulose nanomaterials. Cellulose 25 (4):2151–89. doi:10.1007/s10570-018-1723-5.
  • Kondo, T. 2005. Hydrogen bonds in cellulose and cellulose derivatives. In Polysaccharides: Structural diversity and functional versatility, ed. S. Dumitriu, In. Marcel Dekker; New York, 1998. pp. 131–172 .
  • Korica, M., L. Fras Zemljič, M. Bračič, R. Kargl, S. Spirk, D. Reishofer, K. Mihajlovski, and M. Kostić. 2018. Novel protein-repellent and antimicrobial polysaccharide multilayer thin films. Holzforschung 73 (1):93–103. doi:10.1515/hf-2018-0094.
  • Lazouzi, G., M. M. Vuksanović, N. Z. Tomić, M. Mitrić, M. Petrović, V. Radojević, and R. J. Heinemann. 2018. Optimized preparation of alumina based fillers for tuning composite properties. Ceramics International 44 (7):7442–49. doi:10.1016/j.ceramint.2018.01.083.
  • Li, B., W. Xu, D. Kronlund, A. Määttänen, J. Liu, J.-H. Smått, J. Peltonen, S. Willför, X. Mu, and C. Xu. 2015. Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohydrate Polymers 133:605–12. doi:10.1016/j.carbpol.2015.07.033.
  • Milanovic, J., S. Schiehser, A. Potthast, and M. Kostic. 2020. Stability of TEMPO-oxidized cotton fibers during natural aging. Carbohydrate Polymers 230:115587. doi:10.1016/j.carbpol.2019.115587.
  • Mohammed, N., N. Grishkewich, and K. C. Tam. 2018. Cellulose nanomaterials: Promising sustainable nanomaterials for application in water/wastewater treatment processes. Environmental Science: Nano 5 (3):623–58. doi:10.1039/C7EN01029J.
  • Mokrzyck, W., and M. Tatol. 2011. Color difference Delta E – A survey. Machine Graphics and Vision 8 (4):383–411.
  • Osong, S. H., S. Norgren, and P. Engstrand. 2016. Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: A review. Cellulose 23 (1):93–123. doi:10.1007/s10570-015-0798-5.
  • Pereira, F. (2016). Nanocellulose-based composites for conservation of cultural heritage on paper: Comparative studies between traditional and innovative methods. In: TAPPI International Conference on Nanotechnology for Renewable Materials 2016, Grenoble, France. pp. 348–65.
  • Praskalo, J., M. Kostic, A. Potthast, G. Popov, B. Pejic, and P. Skundric. 2009. Sorption properties of TEMPO-oxidized natural and man-made cellulose fibers. Carbohydrate Polymers 77 (4):791–98. doi:10.1016/j.carbpol.2009.02.028.
  • Saito, T., and A. Isogai. 2004. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules. 5(5). 1983–1989 doi:10.1021/bm0497769.
  • Saito, T., I. Shibata, A. Isogai, N. Suguri, and N. Sumikawa. 2005. Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydrate Polymers 61 (4):414–19. doi:10.1016/j.carbpol.2005.05.014.
  • Santos, S., J. Carbajo, N. Gómez, E. M. Quintana, M. Ladero, and A. Sànchez. 2016. Use of bacterial cellulose in degraded paper restoration. Part I: Application on model papers. Journal of Materials Science 51 (3):1541–42. doi:10.1007/s10853-015-9476-0.
  • Schmied, F. J., C. Teichert, L. Kappel, U. Hirn, W. Bauer, and R. Schennach. 2013. What holds paper together: Nanometre scale exploration of bonding between paper fibres. Scientific Reports 3 (1):2432. doi:10.1038/srep02432.
  • Shen, J., Z. Song, X. Qian, and F. Yang. 2010. Carboxymethyl cellulose/alum modified precipitated calcium carbonate fillers: Preparation and their use in papermaking. Carbohydrate Polymers 81 (3):545–53. doi:10.1016/j.carbpol.2010.03.012.
  • Taipale, T., M. Österberg, A. Nykänen, J. Ruokolainen, and J. Laine. 2010. Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17 (5):1005–20. doi:10.1007/s10570-010-9431-9.
  • Völkel, L., K. Ahn, U. Hähner, W. Gindl-Altmutter, and A. Potthast. 2017. Nano meets the sheet: Adhesive-free application of nanocellulosic suspensions in paper conservation. Heritage Science 5 (1):23. doi:10.1186/s40494-017-0134-5.
  • Yuan, B., J. Zhang, J. Yu, R. Song, Q. Mi, J. He, and J. Zhang. 2016. Transparent and flame retardant cellulose/aluminum hydroxide nanocomposite aerogels. Science China. Chemistry 59 (10):1335–41. doi:10.1007/s11426-016-0188-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.