173
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Physicochemical, Morphological, and Microstructural Characterisation of Bacterial Nanocellulose from Gluconacetobacter xylinus BCZM

, ORCID Icon, , ORCID Icon, &

References

  • Abba, M., M. Abdullahi, M. H. M. Nor, C. S. Chong, and Z. Ibrahim. 2017. Isolation and Characterisation of Locally Isolated Gluconacetobacter Xylinus Bczm Sp. With Nanocellulose Producing Potentials. IET Nanobiotechnology 12:52–56. doi:10.1049/iet-nbt.2017.0024.
  • Abba, M., Z. Ibrahim, C. S. Chong, N. A. Zawawi, M. R. A. Kadir, A. H. M. Yusof, and S. I. Abd Razak. 2019. Transdermal Delivery of Crocin Using Bacterial Nanocellulose Membrane. Fibers and Polymers 20 (10):2025–31. doi:10.1007/s12221-019-9076-8.
  • Abdul Khalil, H., C. K. Saurabh, A. Adnan, M. N. Fazita, M. Syakir, Y. Davoudpour, M. Rafatullah, C. Abdullah, M. Haafiz, and R. Dungani. 2016. A Review on Chitosan-Cellulose Blends and Nanocellulose Reinforced Chitosan Biocomposites: Properties and Their Applications. Carbohydrate Polymers 150:216–26. doi:10.1016/j.carbpol.2016.05.028.
  • Ali, J. B., A. B. Musa, A. Danladi, M. M. Bukhari, and B. B. Nyakuma. 2020. Physico-Mechanical Properties of Unsaturated Polyester Resin Reinforced Maize Cob and Jute Fibre Composites. Journal of Natural Fibers, 1–21. doi:10.1080/15440478.2020.1841062.
  • Basu, P. 2018. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. London. United Kingdom (UK): Academic Press (Elsevier).
  • Burhenne, L., J. Messmer, T. Aicher, and M.-P. Laborie. 2013. The Effect of the Biomass Components Lignin, Cellulose and Hemicellulose on Tga and Fixed Bed Pyrolysis. Journal of Analytical and Applied Pyrolysis 101:177–84. doi:10.1016/j.jaap.2013.01.012.
  • Cherpinski, A., S. Torres-Giner, J. Vartiainen, M. S. Peresin, P. Lahtinen, and J. M. Lagaron. 2018. Improving the Water Resistance of Nanocellulose-Based Films with Polyhydroxyalkanoates Processed by the Electrospinning Coating Technique. Cellulose 25 (2):1291–307. doi:10.1007/s10570-018-1648-z.
  • Curvello, R., V. S. Raghuwanshi, and G. Garnier. 2019. Engineering Nanocellulose Hydrogels for Biomedical Applications. Advances in Colloid and Interface Science 267:47–61.
  • Dima, S.-O., D.-M. Panaitescu, C. Orban, M. Ghiurea, S.-M. Doncea, R. C. Fierascu, C. L. Nistor, E. Alexandrescu, C.-A. Nicolae, and B. Trică. 2017. Bacterial Nanocellulose from Side-Streams of Kombucha Beverages Production: Preparation and Physical-Chemical Properties. Polymers 9 (12):374. doi:10.3390/polym9080374.
  • Fang, J., L. Zhang, D. Sutton, X. Wang, and T. Lin. 2012. Needleless Melt-Electrospinning of Polypropylene Nanofibres. Journal of Nanomaterials 2012:382639. doi:10.1155/2012/382639.
  • French, A. D., and M. S. Cintrón. 2013. Cellulose Polymorphy, Crystallite Size, and the Segal Crystallinity Index. Cellulose 20 (1):583–88. doi:10.1007/s10570-012-9833-y.
  • Giudicianni, P., G. Cardone, G. Sorrentino, and R. Ragucci. 2014. Hemicellulose, Cellulose and Lignin Interactions on Arundo Donax Steam Assisted Pyrolysis. Journal of Analytical and Applied Pyrolysis 110:138–46. doi:10.1016/j.jaap.2014.08.014.
  • Guhados, G., W. Wan, and J. L. Hutter. 2005. Measurement of the Elastic Modulus of Single Bacterial Cellulose Fibers Using Atomic Force Microscopy. Langmuir 21 (14):6642–46. doi:10.1021/la0504311.
  • Han, J., S. Wang, S. Zhu, C. Huang, Y. Yue, C. Mei, X. Xu, and C. Xia. 2019. Electrospun Core-Shell Nanofibrous Membranes with Nanocellulose-Stabilized Carbon Nanotubes for Use as High-Performance Flexible Supercapacitor Electrodes with Enhanced Water Resistance, Thermal Stability, and Mechanical Toughness. ACS Applied Materials & Interfaces 11 (47):44624–35. doi:10.1021/acsami.9b16458.
  • Hestrin, S. A., and M. Schramm. 1954. Factors Affecting Production of Cellulose at the Air/Liquid Interface of a Culture of Acetobacter xylinum. Journal General Microbiology 11 (1):123–29. doi:10.1099/00221287-11-1-123.
  • Jorfi, M., and E. J. Foster. 2015. Recent Advances in Nanocellulose for Biomedical Applications. Journal of Applied Polymer Science 132 (14):41719(1–19). doi:10.1002/app.41719.
  • Jozala, A. F., L. C. De Lencastre-Novaes, A. M. Lopes, V. De Carvalho Santos-Ebinuma, P. G. Mazzola, A. Pessoa-Jr, D. Grotto, M. Gerenutti, and M. V. Chaud. 2016. Bacterial Nanocellulose Production and Application: A 10-Year Overview. Applied Microbiology and Biotechnology 100 (5):2063–72. doi:10.1007/s00253-015-7243-4.
  • Kalia, S., A. Dufresne, B. M. Cherian, B. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos. 2011. Cellulose-Based Bio-and Nanocomposites: A Review. International Journal of Polymer Science 2011:837875. doi:10.1155/2011/837875.
  • Kamel, R., N. A. El-Wakil, A. Dufresne, and N. A. Elkasabgy. 2020. Nanocellulose: From an Agricultural Waste to a Valuable Pharmaceutical Ingredient. International Journal of Biological Macromolecules 163:1579–90. doi:10.1016/j.ijbiomac.2020.07.242.
  • Kargarzadeh, H., I. Ahmad, I. Abdullah, A. Dufresne, S. Y. Zainudin, and R. M. Sheltami. 2012. Effects of Hydrolysis Conditions on the Morphology, Crystallinity, and Thermal Stability of Cellulose Nanocrystals Extracted from Kenaf Bast Fibers. Cellulose 19 (3):855–66. doi:10.1007/s10570-012-9684-6.
  • Kasmani, J. E. 2016. Effects of Ozone and Nanocellulose Treatments on the Strength and Optical Properties of Paper Made from Chemical Mechanical Pulp. BioResources 11 (3):7710–20. doi:10.15376/biores.11.3.7710-7720.
  • Kim, D.-Y., B.-M. Lee, D. H. Koo, P.-H. Kang, and J.-P. Jeun. 2016. Preparation of Nanocellulose from a Kenaf Core Using E-Beam Irradiation and Acid Hydrolysis. Cellulose 23 (5):3039–49. doi:10.1007/s10570-016-1037-4.
  • Klemm, D., F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, and A. Dorris. 2011. Nanocelluloses: A New Family of Nature‐Based Materials. Angewandte Chemie International Edition 50:5438–66.
  • Krishni, R. R., K. Y. Foo, and B. H. Hameed. 2014. Adsorptive Removal of Methylene Blue Using the Natural Adsorbent-Banana Leaves. Desalination and Water Treatment 52 (31–33):6104–12. doi:10.1080/19443994.2013.815687.
  • Krystynowicz, A., W. Czaja, A. Wiktorowska-Jezierska, M. Gon�alves-Mi?kiewicz, M. Turkiewicz, and S. Bielecki. 2002. Factors Affecting the Yield and Properties of Bacterial Cellulose. Journal of Industrial Microbiology and Biotechnology 29 (4):189–95. doi:10.1038/sj.jim.7000303.
  • Lin, N., and A. Dufresne. 2014. Nanocellulose in Biomedicine: Current Status and Future Prospect. European Polymer Journal 59:302–25. doi:10.1016/j.eurpolymj.2014.07.025.
  • Liu, C., B. Li, H. Du, D. Lv, Y. Zhang, G. Yu, X. Mu, and H. Peng. 2016. Properties of Nanocellulose Isolated from Corncob Residue Using Sulfuric Acid, Formic Acid, Oxidative and Mechanical Methods. Carbohydrate Polymers 151:716–24. doi:10.1016/j.carbpol.2016.06.025.
  • Lv, G.-J., S.-B. Wu, and R. Lou. 2010. Kinetic Study for the Thermal Decomposition of Hemicellulose Isolated from Corn Stalk. BioResources 5:1281–91.
  • Maddela, N. R., Z. Zhou, Z. Yu, S. Zhao, and F. Meng. 2018. Functional Determinants of Extracellular Polymeric Substances in Membrane Biofouling: Experimental Evidence from Pure-Cultured Sludge Bacteria. Applied and Environmental Microbiology 84:e00756–18. doi:10.1128/AEM.00756-18.
  • Mohammadkazemi, F., K. Doosthoseini, E. Ganjian, and M. Azin. 2015. Manufacturing of Bacterial Nano-Cellulose Reinforced Fiber−Cement Composites. Construction and Building Materials 101:958–64. doi:10.1016/j.conbuildmat.2015.10.093.
  • Moon, R. J., A. Martini, J. Nairn, J. Simonsen, and J. Youngblood. 2011. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chemical Society Reviews 40:3941–94.
  • Naeem, M. A., Q. Siddiqui, M. Mushtaq, A. Farooq, Z. Pang, and Q. Wei. 2020. Insitu Self-Assembly of Bacterial Cellulose on Banana Fibers Extracted from Peels. Journal of Natural Fibers 17 (9):1317–28. doi:10.1080/15440478.2018.1563580.
  • Nikonenko, N. A., D. K. Buslov, N. I. Sushko, and R. G. Zhbankov. 2000. Investigation of Stretching Vibrations of Glycosidic Linkages in Disaccharides and Polysaccharides with Use of Ir Spectra Deconvolution. Biopolymers: Original Research on Biomolecules 57 (4):257–62. doi:10.1002/1097-0282(2000)57:4<257::AID-BIP7>3.0.CO;2-3.
  • Nyakuma, B. B., S. Wong, and O. Oladokun. 2019. Non-Oxidative Thermal Decomposition of Oil Palm Empty Fruit Bunch Pellets: Fuel Characterisation, Thermogravimetric, Kinetic, and Thermodynamic Analyses. Biomass Conversion and Biorefinery. doi:10.1007/s13399-019-00568-1.
  • Nyakuma, B. B., S. L. Wong, H. M. Faizal, H. U. Hambali, O. Oladokun, and T. Abdullah. 2020. Carbon Dioxide Torrefaction of Oil Palm Empty Fruit Bunches Pellets: Characterisation and Optimisation by Response Surface Methodology. Biomass Conversion and Biorefinery. doi:10.1007/s13399-020-01071-8.
  • Palacio, S., M. Aitkenhead, A. Escudero, G. Montserrat-Martí, M. Maestro, and A. J. Robertson. 2014. Gypsophile Chemistry Unveiled: Fourier Transform Infrared (FTIR) Spectroscopy Provides New Insight into Plant Adaptations to Gypsum Soils. PLoS One 9 (9):e107285. doi:10.1371/journal.pone.0107285.
  • Park, S., J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson. 2010. Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance. Biotechnology for Biofuels 3 (1):10. doi:10.1186/1754-6834-3-10.
  • Peretz, R., E. Sterenzon, Y. Gerchman, V. K. Vadivel, T. Luxbacher, and H. Mamane. 2019. Nanocellulose Production from Recycled Paper Mill Sludge Using Ozonation Pretreatment Followed by Recyclable Maleic Acid Hydrolysis. Carbohydrate Polymers 216:343–51. doi:10.1016/j.carbpol.2019.04.003.
  • Rambabu, N., S. Panthapulakkal, M. Sain, and A. Dalai. 2016. Production of Nanocellulose Fibers from Pinecone Biomass: Evaluation and Optimization of Chemical and Mechanical Treatment Conditions on Mechanical Properties of Nanocellulose Films. Industrial Crops and Products 83:746–54. doi:10.1016/j.indcrop.2015.11.083.
  • Reddy, J. P., and J.-W. Rhim. 2014. Characterization of Bionanocomposite Films Prepared with Agar and Paper-Mulberry Pulp Nanocellulose. Carbohydrate Polymers 110:480–88. doi:10.1016/j.carbpol.2014.04.056.
  • Sakwises, L., N. Rodthongkum, and S. Ummartyotin. 2017. Sno2- and Bacterial-Cellulose Nanofiber-Based Composites as a Novel Platform for Nickel-Ion Detection. Journal of Molecular Liquids 248:246–52. doi:10.1016/j.molliq.2017.10.047.
  • Sanchis, M., M. Carsí, C. Gómez, M. Culebras, K. Gonzales, and F. Torres. 2017. Monitoring Molecular Dynamics of Bacterial Cellulose Composites Reinforced with Graphene Oxide by Carboxymethyl Cellulose Addition. Carbohydrate Polymers 157:353–60. doi:10.1016/j.carbpol.2016.10.001.
  • Shahabi-Ghahafarrokhi, I., F. Khodaiyan, M. Mousavi, and H. Yousefi. 2015. Preparation and Characterization of Nanocellulose from Beer Industrial Residues Using Acid Hydrolysis/Ultrasound. Fibers and Polymers 16 (3):529–36. doi:10.1007/s12221-015-0529-4.
  • Shalauddin, M., S. Akhter, W. J. Basirun, S. Bagheri, N. S. Anuar, and M. R. Johan. 2019. Hybrid Nanocellulose/F-Mwcnts Nanocomposite for the Electrochemical Sensing of Diclofenac Sodium in Pharmaceutical Drugs and Biological Fluids. Electrochimica acta 304:323–33. doi:10.1016/j.electacta.2019.03.003.
  • Shankar, S., and J.-W. Rhim. 2016. Preparation of Nanocellulose from Micro-Crystalline Cellulose: The Effect on the Performance and Properties of Agar-Based Composite Films. Carbohydrate Polymers 135:18–26. doi:10.1016/j.carbpol.2015.08.082.
  • Svensson, A., P. T. Larsson, G. Salazar-Alvarez, and L. Wågberg. 2013. Preparation of Dry Ultra-Porous Cellulosic Fibres: Characterization and Possible Initial Uses. Carbohydrate Polymers 92 (1):775–83. doi:10.1016/j.carbpol.2012.09.090.
  • Thomas, B., M. C. Raj, J. Joy, A. Moores, G. L. Drisko, and C. M. Sanchez. 2018. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chemical Reviews 118:11575–625. doi:10.1021/acs.chemrev.7b00627.
  • Toyosaki, H., T. Naritomi, A. Seto, M. Matsuoka, T. Tsuchida, and F. Yoshinaga. 2014. Screening of Bacterial Cellulose-Producingacetobacterstrains Suitable for Agitated Culture. Bioscience, Biotechnology, and Biochemistry 59:1498–502. doi:10.1271/bbb.59.1498.
  • Traoré, M., J. Kaal, and A. M. Cortizas. 2016. Application of FTIR Spectroscopy to the Characterization of Archeological Wood. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 153:63–70. doi:10.1016/j.saa.2015.07.108.
  • Trovatti, E., L. S. Serafim, C. S. Freire, A. J. Silvestre, and C. P. Neto. 2011. Gluconacetobacter Sacchari: An Efficient Bacterial Cellulose Cell-Factory. Carbohydrate Polymers 86 (3):1417–20. doi:10.1016/j.carbpol.2011.06.046.
  • Vanitjinda, G., T. Nimchua, and P. Sukyai. 2019. Effect of Xylanase-Assisted Pretreatment on the Properties of Cellulose and Regenerated Cellulose Films from Sugarcane Bagasse. International Journal of Biological Macromolecules 122:503–16. doi:10.1016/j.ijbiomac.2018.10.191.
  • Vasconcelos, N. F., J. P. A. Feitosa, F. M. P. Da Gama, J. P. S. Morais, F. K. Andrade, M. D. S. M. De Souza Filho, and M. D. F. Rosa. 2017. Bacterial Cellulose Nanocrystals Produced under Different Hydrolysis Conditions: Properties and Morphological Features. Carbohydrate Polymers 155:425–31. doi:10.1016/j.carbpol.2016.08.090.
  • Wang, L., C. Schütz, G. Salazar-Alvarez, and -M.-M. Titirici. 2014. Carbon Aerogels from Bacterial Nanocellulose as Anodes for Lithium-Ion Batteries. RSC Advances 4 (34):17549–54. doi:10.1039/c3ra47853j.
  • Wang, S., H. Lin, L. Zhang, G. Dai, Y. Zhao, X. Wang, and B. Ru. 2016. Structural Characterization and Pyrolysis Behavior of Cellulose and Hemicellulose Isolated from Softwood Pinus armandii Franch. Energy & Fuels 30 (7):5721–28. doi:10.1021/acs.energyfuels.6b00650.
  • Yang, Y., J. Jia, J. Xing, J. Chen, and S. Lu. 2013. Isolation and Characteristics Analysis of a Novel High Bacterial Cellulose Producing Strain Gluconacetobacter Intermedius Cis26. Carbohydrate Polymers 92 (2):2012–17. doi:10.1016/j.carbpol.2012.11.065.
  • Zhuo, X., C. Liu, R. Pan, X. Dong, and Y. Li. 2017. Nanocellulose Mechanically Isolated from Amorpha fruticosa Linn. ACS Sustainable Chemistry & Engineering 5 (5):4414–20. doi:10.1021/acssuschemeng.7b00478.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.