428
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Bio-composite Thermal Insulation Materials Based on Banana Leaves Fibers and Polystyrene: Physical and Thermal Performance

, , ORCID Icon, , &

References

  • Abu-Jdayil, B., W. Hittini, and A. H. Mourad. 2019. “Development of Date Pit-Polystyrene Thermoplastic Heat Insulator Material: Physical and Thermal Properties. ” International Journal of Polymer Science 2019. doi:10.1155/2019/1697627.
  • Akindoyo, J. O., D. H. Mohammad, S. Ghazali, H. P. Heim, And M. Feldmann. 2017. Composites Part A: Applied Science and Manufacturing. Effects of Surface Modification on Dispersion, Mechanical, Thermal and Dynamic Mechanical Properties of Injection Molded PLA-Hydroxyapatite Composites. doi:10.1016/j.compositesa.2017.09.013.
  • Akintayo, C. O., M. A. Azeez, S. Beuerman, and E. T. Akintayo. 2016. Spectroscopic, Mechanical, and Thermal Characterization of Native and Modified Nigerian Coir Fibers. Journal of Natural Fibers 13 (5):520–31. doi:10.1080/15440478.2015.1076365.
  • Ali, M. E., and A. Alabdulkarem. 2017b. On Thermal Characteristics and Microstructure of a New Insulation Material Extracted from Date Palm Trees Surface Fibers. Construction and Building Materials 138:276–84. doi:10.1016/j.conbuildmat.2017.02.012.
  • Al-Kadhemy, M., F. Hadi, W. H. Abaas, and I. Fakher. 2013. The Effect of Gamma Radiation on the FTIR Spectrum of Crystal Violet Doped Polystyrene Films.Pdf. Caspian Journal of Applied Sciences Research 57 (3B):1968–74.
  • AlnurYusuf, N. 2018. Determination of Structural, Physical, and Thermal Properties of Biocomposite. Jurnal Teknologi 1:91–100.
  • Aminudin, E., N. A. Hafizah, H. A. Khalid, N. A. Azman, K. Bakri, M. Fadhil, R. Zakaria, and N. A. Zainuddin. 2017. “Utilization of Baggase Waste Based Materials as Improvement for Thermal Insulation of Cement Brick.”. MATEC Web of Conferences 103:01019. doi:10.1051/matecconf/201710301019.
  • Asdrubali, F., and S. Schiavoni. 2015. A Review of Unconventional Sustainable Building Insulation Materials. Sustainable Materials and Technologies 4 (2015):1–17. doi:10.1016/j.susmat.2015.05.002.
  • Balla, V. 2019. Additive Manufacturing of Natural Fiber Reinforced Polymer Composites: Processing and Prospects. Composites Part B: Engineering 174 (March):106956. doi:10.1016/j.compositesb.2019.106956.
  • Behzad, T., and M. Sain. 2007. Finite Element Modeling of Polymer Curing in Natural Fiber Reinforced Composites. Composites Science and Technology 67 (7–8):1666–73. doi:10.1016/j.compscitech.2006.06.021.
  • Binici, H., O. Aksogan, and C. Demirhan. 2016. “Mechanical, Thermal and Acoustical Characterizations of an Insulation Composite Made of Bio-Based Materials.”. Sustainable Cities and Society 20:17–26. doi:10.1016/j.scs.2015.09.004.
  • Buitrago, J. 2015. Some Properties of Natural Fibers (Sisal, Pineapple, and Banana) in Comparison to Man-Made Technical Fibers (Aramide, Glass, Carbon). Journal of Natural Fibers 12 (4):357–67. doi:10.1080/15440478.2014.929555.
  • Cadena, C., M. Edith, and J. Manuel Vélez. 2017. Natural Fibers from Plantain Pseudostem (Musa Paradisiaca) for Use in Fiber-Reinforced Composites. Journal of Natural Fibers 14 (5):678–90. doi:10.1080/15440478.2016.1266295.
  • “Cairo, Egypt Monthly Weather Forecast - Weather.Com.” 2020. https://weather.com/weather/monthly/l/Cairo+Egypt+EGXX0004:1:EG (October 23, 2020).
  • Chikhi, M., B. Agoudjil, A. Boudenne, and A. Gherabli. 2013. Experimental Investigation of New Biocomposite with Low Cost for Thermal Insulation. Energy and Buildings 66:267–73. doi:10.1016/j.enbuild.2013.07.019.
  • Czichos, H., T. Saito, and L. E. Smith. 2006. Springer Handbook of Materials Measurement Methods. Berlin, Heidelberg: Springer.
  • Dan-Asabe, B., A. S. Yaro, D. S. Yawas, S. Y. Aku, S. U. Abubakar, and D. O. Obada. 2016. “Mechanical, Spectroscopic and Micro-Structural Characterization of Banana Particulate Reinforced PVC Composite as Piping Material.”. Tribology in Industry 38 (2):255–67.
  • Das, H., P. Saikia, and D. Kalita. 2015. “Physico-Mechanical Properties of Banana Fiber Reinforced Polymer Composite as an Alternative Building Material.”. Key Engineering Materials 650:131–38. www.scientific.net/KEM.650.131.
  • Evon, P., V. Vandenbossche, P. Y. Pontalier, and L. Rigal. 2014. New Thermal Insulation Fiberboards from Cake Generated during Biorefinery of Sunflower Whole Plant in a Twin-Screw Extruder. Industrial Crops and Products 52:354–62. doi:10.1016/j.indcrop.2013.10.049.
  • “Factfish Bananas, Production Quantity for Egypt.” http://www.factfish.com/statistic-country/egypt/bananas,+production+quantity (February 21, 2020).
  • Fao. 2019. CO FO O CU DIT Banana Fusarium Wilt Tropical Race 4 : Banana Trade. November. FAO Food Outlook.
  • Fernandes, E., R. Kasper, C. Marangoni, O. Souza, and N. Sellin. 2013. Thermochemical Characterization of Banana Leaves as a Potential Energy Source. Energy Conversion and Management 75:603–08. doi:10.1016/j.enconman.2013.08.008.
  • Fiore, V., T. Scalici, and A. Valenza. 2014. Characterization of a New Natural Fiber from Arundo Donax L. as Potential Reinforcement of Polymer Composites. Carbohydrate Polymers 106 (1):77–83. doi:10.1016/j.carbpol.2014.02.016.
  • Gholampour, A., and T. Ozbakkaloglu. 2020. Journal of Materials Science A Review of Natural Fiber Composites: Properties, Modification and Processing Techniques, Characterization, Applications. US: Springer. doi:10.1007/s10853-019-03990-y.
  • Guimarães, J. L., E. Frollinib, C. G. Silvab, F. Wypych, and K. G. Satyanarayana. 2009. Characterization of Banana, Sugarcane Bagasse and Sponge Gourd Fibers of Brazil. Industrial Crops and Products. 30(3):407–15. doi:10.1016/j.indcrop.2009.07.013.
  • Guna, V.,  M. Ilangovan, C. Hu, K. Venkatesh, and N. Reddy. 2019. “Valorization of Sugarcane Bagasse by Developing Completely Biodegradable Composites for Industrial Applications.” Industrial Crops and Products 131(December 2018): 25–31. doi: 10.1016/j.indcrop.2019.01.011.
  • Hittini, W., B. Abu-Jdayil, and A. H. Mourad. 2019. Development of Date Pit–Polystyrene Thermoplastic Heat Insulator Material: Mechanical Properties. Journal of Thermoplastic Composite Materials 2019.
  • Instruments, T. A. 2012. Principal Methods of Thermal Conductivity Measurement. Ta Instruments 1–5.
  • KABIR, M. O. H. A. M. M. A. D., M. O. H. A. M. M. A. D. ISLAM, and H. A. O. WANG. 2013. Mechanical and Thermal Properties of Jute Fibre Reinforced Composites. Journal of Multifunctional Composites 1 (1):71–76. doi:10.12783/.2168-4286/1.1/Islam.
  • Kale, R. D., S. Barwar, P. Kane, and L. Bhatt. 2018. Green Synthesis of Magnetite Nanoparticles Using Banana Leaves. European Journal of Sciences (EJS) (June):26–34. doi:10.29198/ejs1803.
  • Karamura, D., E. Karamura, and G. Blomme. 2011. General Plant Morphology of Musa. Banana Breeding (November 2015:1–20.
  • Krishni, R. R., K. Y. Foo, and B. H. Hameed. 2014. Adsorptive Removal of Methylene Blue Using the Natural Adsorbent-Banana Leaves. Desalination and Water Treatment 52 (31–33):6104–12. doi:10.1080/19443994.2013.815687.
  • Manikandan Nair, K. C., S. Thomas, and G. Groeninckx. 2001. Thermal and Dynamic Mechanical Analysis of Polystyrene Composites Reinforced with Short Sisal Fibres. Composites Science and Technology 61 (16):2519–29. doi:10.1016/S0266-3538(01)00170-1.
  • Marques, B., A. Tadeu, J. Almeida, J. António, and  J. Brito. 2020. Characterisation of Sustainable Building Walls Made from Rice Straw Bales. Journal of Building Engineering 28:101041. doi:10.1016/j.jobe.2019.101041.
  • Mati-Baouche, N., et al. 2014. Mechanical, Thermal and Acoustical Characterizations of an Insulating Bio-Based Composite Made from Sunflower Stalks Particles and Chitosan. Industrial Crops and Products 58:244–50. doi:10.1016/j.indcrop.2014.04.022.
  • Memon, J. R., S. Memon, M. Bhanger, G. Memon, A. El- Turki, and G. Allen. 2008. Characterization of Banana Peel by Scanning Electron Microscopy and FT-IR Spectroscopy and Its Use for Cadmium Removal. Colloids and Surfaces B: Biointerfaces. 66(2):260–65. doi:10.1016/j.colsurfb.2008.07.001.
  • Mofokeng, J. P., A. S. Luyt, T. Tábi, and J. Kovács. 2012. Comparison of Injection Moulded, Natural Fibre-Reinforced Composites with PP and PLA as Matrices. Journal of Thermoplastic Composite Materials 25 (8):927–48. doi:10.1177/0892705711423291.
  • Monteiro, S. 2014. Characterization of Banana Fibers Functional Groups by Infrared Spectroscopy. Materials Science Forum 775–776:250–54. www.scientific.net/MSF.775-776.250.
  • Muthuraj, R., C. Lacoste, P. Lacroix, and A. Bergeret. 2019. Sustainable Thermal Insulation Biocomposites from Rice Husk, Wheat Husk, Wood Fibers and Textile Waste Fibers: Elaboration and Performances Evaluation. Industrial Crops and Products 135 December 2018:238–45. doi:10.1016/j.indcrop.2019.04.053
  • Muthuraj, R., M. Misra, and A. K. Mohanty. 2017. Biocomposite Consisting of Miscanthus Fiber and Biodegradable Binary Blend Matrix: Compatibilization and Performance Evaluation. RSC Advances 7 (44):27538–48. doi:10.1039/C6RA27987B.
  • Nam, S., A. D. French, B. D. Condon, and M. Concha. 2016. Segal Crystallinity Index Revisited by the Simulation of X-Ray Diffraction Patterns of Cotton Cellulose Iβ and Cellulose II. Carbohydrate Polymers 135:1–9. doi:10.1016/j.carbpol.2015.08.035.
  • Papadopoulos, A. M. 2005. State of the Art in Thermal Insulation Materials and Aims for Future Developments. Energy and Buildings 37 (1):77–86. doi:10.1016/j.enbuild.2004.05.006.
  • Parkash, A. 2015. Analytical Biochemistry Antioxidant Medications : Facts, Myths and Prospects. Biochemistry & Analytical Biochemistry 2 (2):1–2.
  • Pereira, P., K. Benini, C. Benini, C. Watashi, and M. Cioffi. 2013. Characterization of High Density Polyethylene (HDPE) Reinforced with Banana Peel Fibers. BioResources. 8(2):2351–65. doi:10.15376/biores.8.2.2351-2365.
  • Pereira, P. H. F., C. Y. Watashi , T. Brocks , K. C. C. C. Benini , H. J. C. Voorwald, and M. O. H. Cioffi. 2012. “Mechanical and Thermal Characterization of Banana Peel Fibers/HDPE Composites.” ECCM 2012 - Composites at Venice, Proceedings of the 15th European Conference on Composite Materials 2009(June): 24–28. Venice, Italy.
  • Prithivirajan, R. 2019. Characterization of Musa Paradisiaca L. Cellulosic Natural Fibers from Agro-Discarded Blossom Petal Waste. Journal of Natural Fibers. 1–14. doi:10.1080/15440478.2019.1588826.
  • Prithivirajan, R., S. Jayabal, S. K. Sundaram, and V. Sangeetha. 2016. Hybrid Biocomposites from Agricultural Residues: Mechanical, Water Absorption and Tribological Behaviors. Journal of Polymer Engineering 36 (7):663–71. doi:10.1515/polyeng-2015-0113.
  • Ramasamy, R., K. Obi Reddy, and A. Varada Rajulu. 2018. Extraction and Characterization of Calotropis Gigantea Bast Fibers as Novel Reinforcement for Composites Materials. Journal of Natural Fibers 15 (4):527–38. doi:10.1080/15440478.2017.1349019.
  • Rojas, O. J. 2016. Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials. Switzerland: Springer International Publishing. https://books.google.com.eg/books?id=wV2mCwAAQBAJ.
  • Subagyo, A. 2018. Banana Pseudo-Stem Fiber: Preparation, Characteristics, and Applications. Banana Nutrition-Function and Processing Kinetics. doi:10.5772/intechopen.82204.
  • Suryanto, H., E. Marsyahyo, Y. S. Irawan, and R. Soenoko. 2014. Morphology, Structure, and Mechanical Properties of Natural Cellulose Fiber from Mendong Grass (Fimbristylis Globulosa). Journal of Natural Fibers 11 (4):333–51. doi:10.1080/15440478.2013.879087.
  • Wang, W., Z. Cai, and J. Yu. 2009. Changes in Composition, Structure, and Properties of Jute Fibers after Chemical Treatments 2009. Fibers and Polymers 10 (6):776–80. doi:10.1007/s12221-009-0776-3.
  • Yüksel, N., A. Avci, and M. Kiliĉ. 2012. The Effective Thermal Conductivity of Insulation Materials Reinforced with Aluminium Foil at Low Temperatures. Heat and Mass Transfer/Waerme- Und Stoffuebertragung 48 (9):1569–74. doi:10.1007/s00231-012-1001-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.