154
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In-situ Production and Collection of Bacterial Cellulose on Jute and Flax Mats by Static Cultivation

, , &

References

  • Ashori, A., S. Sheykhnazari, T. Tabarsa, A. Shakeri, and M. Golalipour. 2012. Bacterial cellulose/silica nanocomposites: preparation and characterization. Carbohydrate Polymers 90 (1):413–18. doi:10.1016/j.carbpol.2012.05.060.
  • Atwa, N. A., A. I. El-Diwany, H. El-Saied, and A. F. Basta. 2015. Improvement in bacterial cellulose production using Gluconacetobacter xylinus ATCC 10245 and characterization of the cellulose pellicles produced. Egyptian Pharmaceutical Journal 14 (2):123–29. doi:10.4103/1687-4315.161286.
  • Belay, M., R. K. Nagarale, and V. Verma. 2017. Preparation and characterization of graphene-agar and graphene oxide-agar composites. Journal of Applied Polymer Science 134 (33):1–12. doi:10.1002/app.45085.
  • Costa, A. F. S., F. C. G. Almeida, G. M. Vinhas, and L. A. Sarubbo. 2017. Production of bacterial cellulose by gluconacetobacter hansenii using corn steep liquor as nutrient sources. Frontiers in Microbiology 8:1–12. doi:10.3389/fmicb.2017.02027.
  • Fontana, J. D., A. M. de Souza, C. K. Fontana, I. L. Torriani, J. C. Moreschi, B. J. Gallotti, S. J. de Souza, G. P. Narcisco, J. A. Bichara, and L. F. Farah. 1991. Acetobacter cellulose pellicle as a temporary skin substitute. Applied Biochemistry and Biotechnology 24–25:253–64. doi:10.1007/BF02920250
  • Fontana, J. D., V. C. Franco, S. J. de Souza, I. N. Lyra, and A. M. de Souza. 1991. Nature of plant stimulators in the production of Acetobacter xylinum (“tea fungus”) biofilm used in skin therapy. Applied Biochemistry and Biotechnology 28-29 (1):341–51. doi:10.1007/BF02922613.
  • Gunduz, G., E. Erbas Kiziltas, A. Kiziltas, A. Gencer, D. Aydemir, and N. Asik. 2019. Production of bacterial cellulose fibers in the presence of effective microorganism. Journal of Natural Fibers 16 (4):567–75. doi:10.1080/15440478.2018.1428847.
  • Iguchi, M., S. Yamanaka, and A. Budhiono. 2000. Bacterial cellulose-a masterpiece of nature’s arts. Journal of Materials Science 35 (2):261–70. doi:10.1023/A:1004775229149.
  • John, V. F., A. Mechoor, R. K. Rathnan, and P. A. Soloman. 2013. Production of bacterial cellulose and cellulase enzyme using wastepaper hydrolysate and coconut water as dual cheap carbon sources. ICMF 2013. Proceedings of International Conference on Materials for the Future - Innovative Materials, Processes, Products and Applications, Kerala, India.pp. 674–676.
  • Keshk, S. M. A. S. 2014. Bacterial cellulose production and its industrial applications. Journal of Bioprocessing & Biotechniques 4 (2):150. doi:10.4172/2155-9821.1000150.
  • Kojima, Y., A. Seto, N. Tonouchi, T. Tsuchida, and F. Yoshinaga. 1997. High rate production in static culture of bacterial cellulose from sucrose by a newly isolated acetobacter strain. Bioscience, Biotechnology, and Biochemistry 61 (9):1585–86. doi:10.1271/bbb.61.1585.
  • Kouda, T., T. Naritomi, H. Yano, and F. Yoshinaga. 1998. Inhibitory effect of carbon dioxide on bacterial cellulose production by Acetobacter in agitated culture. Journal of Fermentation and Bioengineering 85 (3):318–21. doi:10.1016/S0922-338X(97)85682-6.
  • Kubvosky, I., D. Kacikova, and F. Kacik. 2020. Structural changes of oak wood main components caused by thermal modification. Polymers 12 (2), pp 1-12, Article id 485. doi:10.3390/polym12020485.
  • Kumar, R., P. Kumari, S. Priyaragini, and K. D. Kumar. 2019. Fabrication of poly lactic acid incorporated bacterial cellulose adhered flax fabric biocomposites. Biocatalysis and Agricultural Biotechnology 21:101277. doi:10.1016/j.bcab.2019.101277.
  • Lee, H. C., and X. Zhao. 1999. Effects of mixing conditions on the production of microbial cellulose by Acetobacter xylinum. Biotechnology and Bioprocess Engineering 4 (1):41–45. doi:10.1007/BF02931912.
  • Lee, J. T., M. W. Kim, Y. S. Song, T. J. Kang, and J. R. Youn. 2010. Mechanical properties of denim fabric reinforced poly(lactic acid). Fibers and Polymers 11 (1):60–66. doi:10.1007/s12221-010-0060-6.
  • Mathur, G., A. Dua, A. R. Das, H. Kaur, S. Kukal, P. Sharma, N. Goswami, A. Sahai, and A. Mathur. 2015. Bacteria cellulose: biopolymer from gluconacetobacter xylinus. Gluconacetobacterxylinus. Macromolecular Symposia 347 (1):27–31. doi:10.1002/masy.201400041.
  • Mohanty, A. K., M. Misra, and L. T. Drzal. 2002. Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. Journal of Polymers and the Environment 10 (1/2):19–26. doi:10.1023/A:1021013921916.
  • Molina-Ramírez, C., M. Castro, M. Osorio, M. Torres-Taborda, B. Gómez, R. Zuluaga, C. Gómez, P. Gañán, O. J. Rojas, and C. Castro. 2017. Effect of different carbon sources on bacterial nanocellulose production and structure using the low ph resistant strain komagataeibacter medellinensis. Komagataeibacter Medellinensis. Materials 10 (6):639. doi:10.3390/ma10060639.
  • Osorio, M. A., D. Estrepo, J. A. Elásquez-Cock, R. O. Uluaga, U. Ontoya, O. Ojas, P. F. Añán, D. Arin, and C. I. Astro. 2014. Synthesis of thermoplastic starch-bacterial cellulose nanocomposites via in situ fermentation. Journal of Brazilian Chemical Society 25:1607–13.
  • Panaitescu, D. M., A. N. Frone, and I. Chiulan. 2016a. Nanostructured biocomposites from aliphatic polyesters and bacterial cellulose. Industrial Crops and Products 93:251–66. doi:10.1016/j.indcrop.2016.02.038.
  • Panaitescu, D. M., A. N. Frone, I. Chiulan, A. Casarica, C. A. Nicolae, M. Ghiurea, R. Trusca, and C. M. Damian. 2016b. Structural and morphological characterization of bacterial cellulose nano-reinforcements prepared by mechanical route. Materials & Design 110:790–801. doi:10.1016/j.matdes.2016.08.052.
  • Panaitescu, D. M., A. N. Frone, I. Chiulan, R. A. Gabor, I. C. Spataru, and A. Casarica. 2017. Biocomposites from polylactic acid and bacterial cellulose nanofibers obtained by mechanical treatment. BioResources 12:662–72.
  • Pommet, M., J. Juntaro, Y. Heng, A. Mantalaris, A. A. F. Lee, K. Wilson, G. Kalinka, M. S. P. Shaffer, and A. Bismarck. 2008. Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 9 (6):1643–51. doi:10.1021/bm800169g.
  • Rashid, T., C. F. Kait, and T. Murugesan. 2016. A “fourier transformed infrared” compound study of lignin recovered from a formic acid process. Procedia Engineering 148:1312–19. doi:10.1016/j.proeng.2016.06.547.
  • Schramm, M., and S. Hestrin. 1954. Factors affecting Production of Cellulose at the Air/ Liquid Interface of a Culture of Acetobacter xylinum. Journal of General Microbiology 11 (1):123–29. doi:10.1099/00221287-11-1-123.
  • Shirai, A., M. Takahashi, H. Kaneko, S.-I. Nishimura, M. Ogawa, N. Nishi, and S. Tokura. 1994. Biosynthesis of a novel polysaccharide by Acetobacter xylinum. Acetobacter Xylinum. International Journal of Biological Macromolecules 16 (6):297–300. doi:10.1016/0141-8130(94)90059-0.
  • Tercjak, A., J. Gutierrez, H. S. Barud, R. R. Domeneguetti, and S. J. L. Ribeiro. 2015. Nano- and Macroscale Structural and Mechanical Properties of in Situ Synthesized Bacterial Cellulose/PEO-b-PPO-b-PEO Biocomposites. ACS Applied Materials & Interfaces 7 (7):4142–50. doi:10.1021/am508273x.
  • Torriani, L., J. C. Moreschi, B. J. Gallotti, S. J. de Souza, G. P.Narcisco, J. A.Bichara, and L. F. X. Farah. 1990. Acetobacter cellulose pellicle as temporary skin substitute. Applied Biochemistry and Biotechnology 24: 253–264.
  • Tsuchida, T., and F. Yoshinaga. 1997. Production of bacterial cellulose by agitation culture systems. Pure and Applied Chemistry 69 (11):2453–58. doi:10.1351/pac199769112453.
  • Velásquez-Cock, J., E. Ramírez, S. Betancourt, J.-L. Putaux, M. Osorio, C. Castro, P. Gañán, and R. Zuluaga. 2014. Influence of the acid type in the production of chitosan films reinforced with bacterial nanocellulose. International Journal of Biological Macromolecules 69:208–13. doi:10.1016/j.ijbiomac.2014.05.040.
  • Viet, D. Q., and V. D. S. Tho. 2017. Study on characteristics of acacia wood by FTIR and thermogravimetric analysis. Vietnam Journal of Chemistry 55:259–64.
  • Zywicka, A., D. Peitler, R. Rakoczy, M. Konopacki, M. Kordas, and K. Fijałkowski. 2015. The effect of different agitation modes on bacterial cellulose synthesis by Gluconacetobacterxylinus strains. Acta Scientiarum Polonorum Zootechnica 14:137–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.