318
Views
7
CrossRef citations to date
0
Altmetric
Review

Typha Leaves Fiber and Its Composites: A Review

ORCID Icon

References

  • Abdelhakh, A. O., A. M. Saleh, M. Soultan, D. Sow, G. Menguy, and S. Gaye, 2016. Improving energy efficiency of buildings by using a light concrete based on Typha australis, 2016 3rd International Conference on Renewable Energies for Developing Countries (REDEC). IEEE, Zouk Mosbeh, Lebanon. pp. 1–5.
  • Acharya, N., K. Mehta, V. Jain, and S. Acharya. 2013. Pharmacognostical studies and phytochemical analysis of Typha angustata with special reference to female inflorescence. International Journal of Green Pharmacy 7 (1):12–17. doi:10.4103/0973-8258.111598.
  • Apfelbaum, S. I. 1985. Cattail (Typha spp.). Management. Natural Areas Journal 5: 9–17.
  • Azanaw, A., A. Haile, and R. K. Gideon. 2019. Extraction and characterization of fibers from Yucca Elephantine plant. Cellulose 26 (2):795–804. doi:10.1007/s10570-018-2103-x.
  • Bajwa, D., E. Sitz, S. Bajwa, and A. Barnick. 2015. Evaluation of cattail (Typha spp.) for manufacturing composite panels. Industrial Crops and Products 75:195–99. doi:10.1016/j.indcrop.2015.06.029.
  • Balaed, K., N. Noriman, O. S. Dahham, S. Sam, R. Hamzah, and M. Omar. 2016. Characterization and properties of low-linear-density polyethylene/Typha latifolia composites. International Journal of Polymer Analysis and Characterization 21 (7):590–98. doi:10.1080/1023666X.2016.1183336.
  • Chakma, K., N. Cicek, and M. Rahman, 2017. Fiber extraction efficiency, quality and characterization of cattail fibres for textile applications, Proceedings of the Canadian Society for Bioengineering Conference (CSBE), Winnipeg, Canada.
  • Das, M., and D. Chakraborty. 2006. Influence of alkali treatment on the fine structure and morphology of bamboo fibers. Journal of Applied Polymer Science 102 (5):5050–56. doi:10.1002/app.25105.
  • Daud, Y., T. Yee, S. Adnan, and N. Zaidi, 2018. Tensile and thermal degradation properties of poly (lactic acid)/Typha Latifolia bio-composites, AIP Conference Proceedings. AIP Publishing LLC, p. 0200481–0200484.
  • Dedeepya, M., T. D. Raju, and T. J. Kumar. 2012. Effect of alkaline treatment on mechanical and thermal properties Of typha Angustifolia fiber reinforced composites. International Journal of Mechanical and Industrial Engineering 1 (4):12–14.
  • Dieye, Y., P. M. GUEYE, V. SAMBOU, S. BODIAN, and Y. DIÉYE. 2019. Thermomechanical characterization of particleboards from powder Typha leaves. Journal of Sustainable Construction Materials and Technologies 4 (1):306–317. doi:10.29187/jscmt.2019.34.
  • Dieye, Y., V. Sambou, M. Faye, A. Thiam, M. Adj, and D. Azilinon. 2017. Thermo-mechanical characterization of a building material based on Typha Australis. Journal of Building Engineering 9:142–46. doi:10.1016/j.jobe.2016.12.007.
  • Girijappa, Y., Rangappa, S., Parameswaranpillai, J., & Siengchin, S., 2019. Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Frontiers in Materials. 6226:1–14.
  • Hasan, M. 2019. Optimization of Typha fibre extraction and properties for composite applications using desirability function analysis. Canada: Department of biosystems engineering. University of Manitoba.
  • Ibrahim, M., J. Abd Jalil, S. Nuraqmar, S. Mahamud, Y. Mat Daud, S. Husseinsyah, and Y. Rafi. 2014. Tensile and morphology properties of polylactic acid/treated typha latifolia composites. Key Engineering Materials 594-595:775–79. doi:10.4028/.scientific.net/KEM.594-595.775.
  • Ikramullah, I., S. Rizal, S. Thalib, and S. Huzni, 2018. Hemicellulose and lignin removal on typha fiber by alkali treatment, IOP Conference Series: Materials Science and Engineering 352: 012019–012019.
  • Ikramullah, I., S. Rizal, Y. Nakai, D. Shiozawa, H. Khalil, S. Huzni, and S. Thalib. 2019. Evaluation of interfacial fracture toughness and interfacial shear strength of Typha spp. fiber/polymer composite by double shear test method. Materials 12 (14):2225–42. doi:10.3390/ma12142225.
  • Jaafar, J., J. P. Siregar, S. M. Salleh, M. H. M. Hamdan, T. Cionita, and T. Rihayat. 2019. Important considerations in manufacturing of natural fiber composites: A review. International Journal of Precision Engineering and Manufacturing-Green Technology 6(3): 1–18.
  • Jabbar, M., and K. Shaker. 2016. Textile raw materials. Physical Sciences Reviews 1 (7):1–12. doi:10.1515/psr-2016-0022.
  • Jin, F.-L., X. Li, and S.-J. Park. 2015. Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry 29:1–11. doi:10.1016/j.jiec.2015.03.026.
  • Kader, W. B., 2019. Physico-mechanical properties of typha angustata (elephant grass) fiber reinforced thermoplastic composites, Department of Chemistry. Bangladesh University of Engineering and Technology, Buet, Dhaka.
  • Ku, P. L. 1988. Polystyrene and styrene copolymers. I. Their manufacture and application. Advances in Polymer Technology: Journal of the Polymer Processing Institute 8 (2):177–96. doi:10.1002/adv.1988.060080204.
  • Kumar, K., D. Kumar, V. Teja, V. Venkateswarlu, M. Kumar, and R. Nadendla. 2013. A review on Typha angustata. International Journal of Phytopharmacy 4:277–81.
  • Liu, J., Z. Zhang, Z. Yu, Y. Liang, X. Li, and L. Ren. 2017. The structure and flexural properties of Typha leaves. Applied Bionics and Biomechanics 2017:1–9. doi:10.1155/2017/1249870.
  • Liyan, L., Zhong, L.L., Rongsheng, L., Yuping, C., Ping, W. 2015. Typha orientalis fibers and preparation method therof. China.
  • Luamkanchanaphan, T., S. Chotikaprakhan, and S. Jarusombati. 2012. A study of physical, mechanical and thermal properties for thermal insulation from narrow-leaved cattail fibers. APCBEE Procedia 1:46–52. doi:10.1016/j.apcbee.2012.03.009.
  • Madhu, P., M. Sanjay, P. Senthamaraikannan, S. Pradeep, S. Saravanakumar, and B. Yogesha. 2019. A review on synthesis and characterization of commercially available natural fibers: Part II. Journal of Natural Fibers 16 (1):25–36. doi:10.1080/15440478.2017.1379045.
  • Maizatul, O., G. Ruzaidi, K. Khalisanni, and Z. Nazarudin. 2012. Morphology and water absorption analysis on single fiber and leaf of typha latifolia. Advanced Materials Research 576:492–95. doi:10.4028/.scientific.net/AMR.576.492.
  • Mbeche, S. M., and T. Omara. 2020. Effects of alkali treatment on the mechanical and thermal properties of sisal/cattail polyester commingled composites. PeerJ Materials Science 2:1–19. doi:10.7717/peerj-matsci.5.
  • Mitich, L. M. 2000. Common cattail, Typha latifolia L. Weed Technology 14 (2):446–50. doi:10.1614/0890-037X(2000)014[0446:CCTLL]2.0.CO;2.
  • Moghaddam, M. K., and S. M. Mortazavi. 2016. Physical and chemical properties of natural fibers extracted from typha australis leaves. Journal of Natural Fibers 13 (3):353–61. doi:10.1080/15440478.2015.1029199.
  • Mohammed, L., M. N. Ansari, G. Pua, M. Jawaid, and M. S. Islam. 2015. A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science 2015:1–15.
  • Mohanty, A., M. A. Misra, and G. Hinrichsen. 2000. Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering 276 (1):1–24. doi:10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W.
  • Mortazavi, S., and M. K. Moghaddam. 2010. An analysis of structure and properties of a natural cellulosic fiber (Leafiran). Fibers and Polymers 11 (6):877–82. doi:10.1007/s12221-010-0877-z.
  • Mortazavi, S. M., and M. K. Moghadam. 2009. Introduction of a new vegetable fiber for textile application. Journal of Applied Polymer Science 113 (5):3307–12. doi:10.1002/app.30301.
  • Morton, J. F. 1975. Cattails (Typha spp.)—weed problem or potential crop? Economic Botany 29 (1):7–29. doi:10.1007/BF02861252.
  • Mwaikambo, L., and M. Ansell. 2006. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials II. Sisal fibres. Journal of Materials Science 41 (8):2497–508. doi:10.1007/s10853-006-5075-4.
  • Mwaikambo, L. Y., and M. P. Ansell. 2002. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science 84 (12):2222–34. doi:10.1002/app.10460.
  • Niang, I., C. Maalouf, T. Moussa, C. Bliard, E. Samin, C. Thomachot-Schneider, M. Lachi, H. Pron, T. H. Mai, and S. Gaye. 2018. Hygrothermal performance of various Typha–clay composite. Journal of Building Physics 42 (3):316–35. doi:10.1177/1744259118759677.
  • Pandey, A., and R. Verma. 2018. Taxonomical and pharmacological status of Typha: A Review. Annals of Plant Sciences 7 (3):2101–2106. doi:10.21746/aps.2018.7.3.2.
  • Ponnukrishnan, P., M. C. Thanu, and S. Richard. 2014. Mechanical characterization of Typha Domingensis natural fiber reinforced polyester composites. American International Journal of Research in Science, Technology, Engineering & Mathematics 6:241–44.
  • Ramanaiah, K., A. Ratna Prasad, and K. H. Chandra Reddy. 2011. Mechanical properties and thermal conductivity of Typha angustifolia natural fiber–reinforced polyester composites. International Journal of Polymer Analysis and Characterization 16 (7):496–503. doi:10.1080/1023666X.2011.598528.
  • Ramesh, M., C. Deepa, M. Tamil Selvan, and K. H. Reddy. 2020. Effect of alkalization on characterization of ripe bulrush (Typha Domingensis) grass fiber reinforced epoxy composites. Journal of Natural Fibers 1–12.
  • Reed, E., and L. C. Marsh. 1955. The cattail potential. Chemurgic Digest 14 (3):9–18.
  • Rezig, S., F. Khoffi, Y. Ben Mlik, M. Jaouadi, S. Msahli, and B. Durand. 2015. Flexural properties of typha natural fiber-reinforced polyester composites. Fibers and Polymers 16 (11):2451–57. doi:10.1007/s12221-015-5306-x.
  • Rezig, S., M. Jaouadi, F. Khoffi, S. Msahil, and B. Durand. 2016. Optimization of processing parameters for extraction of typha stem fibers. International Journal of Applied Research on Textile 4 (2):53–64.
  • Rezig, S., M. Jaouadi, and S. Msahli. 2014. Study of structure and properties of Tunisian Typha leaf fibers. International Journal of Engineering Research & Technology (IJERT) 3 (3):539–46.
  • Rizal, S., D. A. Gopakumar, H. Abdul Khalil, H. Abdul Khalil, H. Abdul Khalil, and H. Abdul Khalil. 2018. Interfacial compatibility evaluation on the fiber treatment in the Typha fiber reinforced epoxy composites and their effect on the chemical and mechanical properties. Polymers 10 (12):1316–1329. doi:10.3390/polym10121316.
  • Rizal, S., D. A. Gopakumar, S. Huzni, S. Thalib, M. Syakir, F. T. Owolabi, N. S. Aprilla, M. Paridah, and H. A. Khalil. 2019. Tailoring the effective properties of Typha Fiber reinforced polymer composite via Alkali treatment. BioResources 14 (3):5630–45.
  • Ruangmee, A., and C. Sangwichien. 2013. Statistical optimization for alkali pretreatment conditions of narrow-leaf cattail by response surface methodology. Songklanakarin Journal of Science & Technology 35 (4):443–50.
  • Safi, S., M. K. Moghaddam, and M. Ahmadi. 2013. Interfacial shear strength of Typha australisnatural fiber–reinforced epoxy composites, 5th International color and coating congress. Isfahan- Iran.
  • Sreekala, M., M. Kumaran, and S. Thomas. 1997. Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. Journal of Applied Polymer Science 66 (5):821–35. doi:10.1002/(SICI)1097-4628(19971031)66:5<821::AID-APP2>3.0.CO;2-X.
  • Ul-Islam, S., Shahid, M., & Mohammad, F., 2013. Perspectives for natural product based agents derived from industrial plants in textile applications–a review. Journal of Cleaner Production. 57:2–18.
  • Vijayan, R., and A. Krishnamoorthy. 2019. Review on natural fiber reinforced composites. Materials Today: Proceedings 16:897–906.
  • Vymazal, J. 2013. Emergent plants used in free water surface constructed wetlands: A review. Ecological Engineering 61:582–92. doi:10.1016/j.ecoleng.2013.06.023.
  • Wuzella, G., A. R. Mahendran, T. Bätge, S. Jury, and A. Kandelbauer. 2011. Novel, binder-free fiber reinforced composites based on a renewable resource from the reed-like plant Typha sp. Industrial Crops and Products 33 (3):683–89. doi:10.1016/j.indcrop.2011.01.008.
  • Yao, F., Q. Wu, Y. Lei, W. Guo, and Y. Xu. 2008. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability 93 (1):90–98. doi:10.1016/j.polymdegradstab.2007.10.012.
  • Yusoff, R. B., H. Takagi, and A. N. Nakagaito. 2016. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Industrial Crops and Products 94:562–73. doi:10.1016/j.indcrop.2016.09.017.
  • Zhang, B., L. Wang, A. Shahbazi, O. Diallo, and A. Whitmore. 2011. Dilute-sulfuric acid pretreatment of cattails for cellulose conversion. Bioresource Technology 102 (19):9308–12. doi:10.1016/j.biortech.2011.07.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.