173
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Effect of Acetylation with Perchloric Acid as Catalyst in Sugarcane Bagasse Waste

, &

References

  • Abu-Jdayil, B., A. H. Mourad., W. Hittini., M. Hassan, and S. Hameedi. 2019. Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Construction and Building Materials 214:709–35. doi:10.1016/j.conbuildmat.2019.04.102.
  • Agboola, S. O., J. O. Akingbala., and G. B. Oguntimein. 1991. Production of low substituted cassava starch acetates and citrates. Starch 43 (1):13–15. doi:10.1002/star.19910430106.
  • Agustin, M. B., F. Nakatsubo, and H. Yano. 2018. Improving the thermal stability of wood-based cellulose by esterification. Carbohydrate Polymers 192:28–36. doi:10.1016/j.carbpol.2018.02.071.
  • Alfredsen, G., P. O. Flæte, and H. Militz. 2013. Decay resistance of acetic anhydride modified wood: A review. International Wood Products Journal 4 (3):137–43. doi:10.1179/2042645313y.0000000034.
  • Alonso-Pippo, W., C. A. Luengo, F. F. Felfli, P. Garzone, and G. Cornacchia. 2009. Energy recovery from sugarcane biomass residues: Challenges and opportunities of bio-oil production in the light of second generation biofuels. Journal of Renewable and Sustainable Energy 1 (6):063102. doi:10.1063/1.3259170.
  • Baksi, S. S., S. C. Birgen, U. Sarkar, H. A. Preisig, S. Markussen, B. Wittgens, and A. Wentzel. 2019. Valorization of lignocellulosic waste (Crotalaria juncea) using alkaline peroxide pretreatment under different process conditions: An optimization study on separation of lignin, cellulose, and hemicellulose. Journal of Natural Fibers 16:662–76. doi:10.1080/15440478.2018.1431998.
  • Bertoti, A. R., S. Luporini, and M. C. A. Esperidião. 2009. Effects of acetylation in vapor phase and mercerization on the properties of sugarcane fibers. Carbohydrate Polymers 77 (1):20–24. doi:10.1016/j.carbpol.2008.11.036.
  • Bledzki, A. K., A. A. Mamun., M. Lucka-Gabor, and V. S. Gutowski. 2008. The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polymer Letters 2 (6):413–22. doi:10.3144/expresspolymlett.2008.50.
  • Bykov, I. 2008. Characterization of natural and technical lignins using FTIR spectroscopy. Master’s Thesis., Lulea University of Technology.
  • Cai, J., P. Fei., Z. Xiong., Y. Shi., K. Yan, and H. Xiong. 2013. Surface acetylation of bamboo cellulose: Preparation and rheological properties. Carbohydrate Polymers 92 (1):11–18. doi:10.1016/j.carbpol.2012.09.059.
  • Cerqueira, D. A., G. R. Filho., R. D. A. Carvalho, and A. J. M. Valente. 2010. Caracterização de acetato de celulose obtido a partir do bagaço de cana-de-açúcar por 1H-RMN. Polímeros 20 (2):85–91. doi:10.1590/S0104-14282010005000017.
  • Chen, C., M. Cho., B. W. Kim, J. Do. Nam, and Y. Lee. 2012. Thermo plasticization and characterization of kenaf fiber by benzylation. Journal of Industrial and Engineering Chemistry 18 (3):1107–11. doi:10.1016/j.jiec.2011.12.012.
  • Colavite, A. P. 2018. Distribuição geográfica e escoamento da produção de biocombustíveis da região sul do Brasil [Geografic distribution and flow of biofuel production in the south of Brazil]. Revista Eletrônica Científica Inovação E Techonologia 9 (23):33–43.
  • Doczekalska, B., M. Bartkowiak, and R. Zakrzewski. 2014. Esterification of willow wood with cyclic acid anhydrides. Wood Research 59 (1):85–96.
  • Eduardo, C., and G. Oliveira. 2020. Acompanhamento da safra brasileira de cana de açúcar - Safra 2018/19. Companhia Nacional De Abastecimento 5 (4):1–73. Accessed June 29, 2020. https://www.udop.com.br/download/estatistica/conab_levantamento_safras/2018a2019_4o_relatorio_cana_safra_conab.pdf
  • Faruk, O., A. K. Bledzki., H. P. Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science 37 (11):1552–96. doi:10.1016/j.progpolymsci.2012.04.003.
  • Fuchs, W. 1928. Genuine lignin. I. acetylation of pine wood. Berichte der Deutschen Chemischen Gesellschaft 61 (B):948–51. doi:10.1002/cber.19280610512.
  • Gan, T., Y. Zhang., Y. Chen., H. Hu., M. Yang., Z. Huang., D. Chen, and A. Huang. 2018. Reactivity of main components and substituent distribution in esterified sugarcane bagasse prepared by effective solid phase reaction. Carbohydrate Polymers 181:633–41. doi:10.1016/j.carbpol.2017.11.102.
  • Garzón-Barrero, N. M., M. A. Shirakawa., S. de Brazolin, R. G. F. N. de Barros Pereira, I. A. R. de Lara, and H. Savastano. 2016. Evaluation of mold growth on sugarcane bagasse particleboards in natural exposure and in accelerated test. International Biodeterioration & Biodegradation 115:266–76. doi:10.1016/j.ibiod.2016.09.006.
  • Geyer, R., J. R. Jambeck, and K. L. Law. 2017. Production, use, and fate of all plastics ever made - Supplementary information. Science Advances 3 (7):19–24. doi:10.1126/sciadv.1700782.
  • González, Z., and E. Pérez. 2002. Effect of acetylation on some properties of rice starch. Starch 54 (3–4):148–54. doi:10.1002/1521-379X(200204)54:3/4<148::AID-STAR148>3.0.CO;2-N.
  • Gouveia, E. R., R. T. Do Nascimento, A. M. Souto-Maior, and G. J. M. Rocha. 2008. Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar [Validation of methodology for the chemical characterization of sugar cane bagasse]. Química Nova 32 (6):1500–03. doi:10.1590/S0100-40422009000600026.
  • Hajiha, H., and M. Sain. 2014. The use of sugarcane bagasse fibres as reinforcements in composites. In Biofiber Reinforcement in Composite Materials, ed. O. Faruk and M. Sain, 525–49. Cambridge: Woodhead Publishing.
  • Hofsetz, K., and M. A. Silva. 2012. Brazilian sugarcane bagasse: Energy and non-energy consumption. Biomass and Bioenergy 46:564–73. doi:10.1016/j.biombioe.2012.06.038.
  • Horn, O. 1928. Acetylation of beech wood. Berichte der Deutschen Chemischen Gesellschaft 61 (B):2542–45. doi:10.1002/cber.19280611122.
  • Hundhausen, U., L. Kloeser, and C. Mai. 2015. Usability of maleic anhydride as wood modification agent for the production of medium density fibreboards (MDF). European Journal of Wood and Wood Products 73 (3):283–88. doi:10.1007/s00107-015-0888-y.
  • Iwamoto, Y., and T. Itoh. 2005. Vapor phase reaction of wood with maleic anhydride (I): Dimensional stability and durability of treated wood. Journal of Wood Science 51 (6):595–600. doi:10.1007/s10086-005-0710-2.
  • Joseph, S., P. Koshy, and S. Thomas. 2005. The role of interfacial interactions on the mechanical properties of banana fibre reinforced phenol formaldehyde composites. Composite Interfaces 12 (6):581–600. doi:10.1163/1568554054915183.
  • Joshi, S. V., L. T. Drzal., A. K. Mohanty, and S. Arora. 2004. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing 35 (3):371–76. doi:10.1016/j.compositesa.2003.09.016.
  • Kabir, M. M., H. Wang., K. T. Lau, and F. Cardona. 2012. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering 43 (7):2883–92. doi:10.1016/j.compositesb.2012.04.053.
  • Kabir, M. M., H. Wang., K. T. Lau, and F. Cardona. 2013. Effects of chemical treatments on hemp fibre structure. Applied Surface Science 276:13–23. doi:10.1016/j.apsusc.2013.02.086.
  • Klock, U., G. I. B. Muñiz., A. S. Andrade, and J. A. Hernandez. 2013. Quimica Da Madeira. 4th ed. Curitiba: Universidade Federal Do Paraná.
  • Larsson Brelid, P., R. Simonson, Ö. Bergman, and T. Nilsson. 2000. Resistance of acetylated wood to biological degradation. Holz Als Roh- Und Werkstoff 58 (5):331–37. doi:10.1007/s001070050439.
  • Luz, S. M., J. Del Tio., G. J. M. Rocha, A. R. Gonçalves, and A. P. Del’Arco. 2008. Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites: Effect of acetylation on mechanical and thermal properties. Composites Part A: Applied Science and Manufacturing 39 (9):1362–69. doi:10.1016/j.compositesa.2008.04.014.
  • Mandal, A., and D. Chakrabarty. 2011. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers 86 (3):1291–99. doi:10.1016/j.carbpol.2011.06.030.
  • Mashkour, M., E. Afra., H. Resalati, and M. Mashkour. 2015. Moderate surface acetylation of nanofibrillated cellulose for the improvement of paper strength and barrier properties. Royal Society of Chemistry Advances 5 (74):60179–87. doi:10.1039/c5ra08161k.
  • Miléo, P. C., G. J. M. de Rocha, and A. R. Gonçalves. 2017. Sugarcane straw reinforced castor oil polyurethane composites: Fiber characterization and analysis of composite properties. Journal of Natural Fibers 14 (4):498–509. doi:10.1080/15440478.2016.1212773.
  • Mulinari, D. R., H. J. C. Voorwald., M. O. H. Cioffi, M. L. C. P. da Silva, and S. M. Luz. 2009. Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer. Carbohydrate Polymers 75 (2):317–21. doi:10.1016/j.carbpol.2008.07.028.
  • Nacos, M. K., P. Katapodis., C. Pappas., D. Daferera., P. A. Tarantilis, P. Christakopoulos, and M. Polissio. 2006. Kenaf xylan – A source of biologically active acidic oligosaccharides. Carbohydrate Polymers 66 (1):126–34. doi:10.1016/j.carbpol.2006.02.032.
  • Oliveira, A. E. C. O. 2009. Modificação química da fibra de linho por esterificação através de sistemas anidridos. Senior Thesis., Universidade Estadual Paulista.
  • Papadopoulos, A. N., H. Militz, and A. Pfeffer. 2010. The biological behaviours of pine wood modified with linear chain carboxylic acid anhydrides against soft rot fungi. International Biodeterioration & Biodegradation 64 (5):409–12. doi:10.1016/j.ibiod.2010.04.002.
  • Resende, T. M., and M. M. Costa. 2020. Biopolymers of sugarcane. Sugarcane biorefinery, technology and perspectives. ed., F. Santos., M. de Matos., S. C. Rabelo, and P. Eichler. 229–54. 1st Canada: Elsevier. doi: 10.1016/b978-0-12-814236-3.00012-3.
  • Rippon, J. A., and D. J. Evans. 2012. Improving the properties of natural fibres by chemical treatments. In Handbook of Natural Fibers. ed. R. M. Kozlowski. Vol. 2. 63–140. Australia: Woodhead Publishing Series in Textiles. doi: 10.1533/9780857095510.1.63.
  • Rowell, R. M. 2006. Chemical modification of wood: A short review. Wood Material Science and Engineering 1 (1):29–33. doi:10.1080/17480270600670923.
  • Sene, L., A. Converti., M. G. A. Felipe, and M. Zilli. 2002. Sugarcane bagasse as alternative packing material for biofiltration of benzene polluted gaseous streams: A preliminary study. Bioresource Technology 83 (2):153–57. doi:10.1016/S0960-8524(01)00192-4.
  • Singh, H., N. S. Sodhi, and N. Singh. 2012. Structure and functional properties of acetylated sorghum starch. International Journal of Food Properties 15 (2):312–25. doi:10.1080/10942912.2010.483633.
  • Singh, J., L. Kaur, and N. Singh. 2004. Effect of acetylation on some properties of corn and potato starches. Starck -Starke 56 (12):586–601. doi:10.1002/star.200400293.
  • Siva, R., T. N. Valarmathi., K. Palanikumar, and A. V. Of. Samrot. 2020. Study on a novel natural cellulosic fiber from Kigelia africana fruit: Characterization and analysis. Carbohydrate Polymers 244:116494. doi:10.1016/j.carbpol.2020.116494.
  • Stafford, R., and P. J. S. Jones. 2019. Viewpoint – Ocean plastic pollution: A convenient but distracting truth? Journal of Marine Policy 103:187–91. doi:10.1016/j.marpol.2019.02.003.
  • Suida, H., and H. Tisch. 1928. Chemistry of beech wood: Acetylation of beech wood and cleavage of the acetylated-beech wood. Berichte 61 (B):1599–604.
  • Tarkow, H. 1945. Decay resistance of acetylated balsa. Paper No. 4. US. Departament of Agriculture Forest Service. Forest Products Laboratory. Madison, WI, USA.
  • Tarkow, H. 1946. A new approach to the acetylation of wood. Paper No. 9. US. Departament of Agriculture Forest Service. Forest Products Laboratory. Madison, WI, USA.
  • Tarkow, H., A. J. Stamm, and E. C. O. Erickson. 1946. Acetylated wood. Report 1593, US. Departament of Agriculture Forest Service. Forest Products Laboratory. Madison, WI, USA.
  • Tita, S. P. S., J. M. F. de Paiva, and E. Frollini. 2002. Resistência ao impacto e outras propriedades de compósitos lignocelulósicos: Matrizes termofixas fenólicas reforçadas com fibras de bagaço de cana-de-açúcar. Polímeros 12 (4):228–39. doi:10.1590/s0104-14282002000400005.
  • Tserki, V., N. E. Zafeiropoulos., F. Simon, and C. A. Panayiotou. 2005. Study of the effect of acetylation and propionylation surface treatments on natural fibres. Composites Part A: Applied Science and Manufacturing 36 (8):1110–18. doi:10.1016/j.compositesa.2005.01.004.
  • Vaidya, A. A., R. H. Newman., S. H. Campion, and I. D. Suckling. 2014. Strength of adsorption of polyethylene glycol on pretreated pinus radiata wood and consequences for enzymatic saccharification. Biomass and Bioenergy 70:39–346. doi:10.1016/j.biombioe.2014.08.024.
  • Vinod, A., M. R. Sanjay., S. Suchart, and P. Jyotishkumar. 2020. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production 258:120978. doi:10.1016/j.jclepro.2020.120978.
  • Willberg-Keyriläinen, P., and J. Ropponen. 2019. Evaluation of esterification routes for long chain cellulose esters. Heliyon 5:11. doi:10.1016/j.heliyon.2019.e02898.
  • Xia, T., H. Huang., G. Wu., X. Jin., E. Sun, and W. Tang. 2017. Study on the acetylation of rice straw-biogas residue and its characteristic effect on rice straw-reinforced composites. BioResources 12 (3):5736–48. doi:10.15376/biores.12.3.5736-5748.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.