314
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Characterization of the Cellulose Fibers Extracted from the Bark of Piliostigma Racemosa

ORCID Icon &

References

  • Ahmed, M. J., M. A. S. Balaji, S. S. Saravanakumar, and P. Senthamaraikannan. 2019. A comprehensive physical, chemical and morphological characterization of novel cellulosic fiber extracted from the stem of Elettaria cardamomum plant. Journal of Natural Fibers 1–12. doi:10.1080/15440478.2019.1691121.
  • Amroune, S., A. Bezazi, A. Belaadi, C. Zhu, F. Scarpa, S. Rahatekar, and A. Imad. 2015. Tensile mechanical properties and surface chemical sensitivity of technical fibres from date palm fruit branches (Phoenix dactylifera L.). Composites. Part A, Applied Science and Manufacturing 71:95–106. doi:10.1016/j.compositesa.2014.12.011.
  • Belouadah, Z., A. Ati, and M. Rokbi. 2015. Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydrate Polymers 134:429–37. doi:10.1016/j.carbpol.2015.08.024.
  • Davies, P., C. Morvan, O. Sire, and C. Baley. 2007. Structure and properties of fibres from sea-grass (Zostera marina). Journal of Materials Science 42:4850–57. doi:10.1007/s10853-006-0546-1.
  • Fiore, V., T. Scalici, and A. Valenza. 2014. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydrate Polymers 106:77–83. doi:10.1016/j.carbpol.2014.02.016.
  • Ganesh, B. N., and B. Rekha. 2013. A comparative study on tensile behaviour of plant and animal fiber reinforced composites. International Journal of Innovation and Applied Studies 2 (4):645–48.
  • Ganesh, B. N., and R. Muralikannan. 2016. Comprehensive characterization of lignocellulosic fruit fibers reinforced hybrid polyester composites. International Journal of Materials Science and Applications 5 (6):302–07. doi:10.11648/j.ijmsa.20160506.21.
  • Ganeshan, P., B. NagarajaGanesh, P. Ramshankar, and K. Raja. 2018. Calotropis gigantea fibers: A potential reinforcement for polymer matrices. International Journal of Polymer Analysis and Characterization 23 (3):271–77. doi:10.1080/1023666X.2018.1439560.
  • Gopi Krishna, M., C. Kailasanathan, and B. NagarajaGanesh. 2020. Physico-chemical and morphological characterization of cellulose fibers extracted from Sansevieria roxburghiana Schult.& Schult.F leaves. Journal of Natural Fibers 1–17. doi:10.1080/15440478.2020.1843102.
  • Jabli, M., N. Tka, K. Ramzi, and T. A. Saleh. 2018. Physicochemical characteristics and dyeing properties of lignin-cellulosic fibers derived from Nerium oleander. Journal of Molecular Liquids 249:1138–44. doi:10.1016/j.molliq.2017.11.126.
  • John, M. J., and R. D. Anandjiwala. 2008. Recent developments in chemical modification and characterization of natural fiber‐reinforced composites. Polymer Composites 29:187–207. doi:10.1002/pc.20461.
  • Kaushik, A., and M. Singh. 2011. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydrate Research 346:76–85. doi:10.1016/j.carres.2010.10.020.
  • Khan, A., R. Vijay, D. L. Singaravelu, M. R. Sanjay, S. Siengchin, M. Jawaid, K. A. Alamry, and A. M. Asiri. 2020b. Extraction and characterization of natural fibers from citrullus lanatus climber. Journal of Natural Fibers 1–9. doi:10.1080/15440478.2020.1758281.
  • Khan, A., V. Raghunathan, D. L. Singaravelu, M. R. Sanjay, S. Siengchin, M. Jawaid, K. A. Alamry, and A. M. Asiri. 2020a. Extraction and characterization of cellulose fibers from the stem of momordica charantia. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2020.1807442.
  • Kozłowski, R., and M. Władyka‐Przybylak. 2008. Flammability and fire resistance of composites reinforced by natural fibers. Polymers for Advanced Technologies 19:446–53. doi:10.1002/pat.1135.
  • Liu, D., G. Han, J. Huang, and Y. Zhang. 2009. Composition and structure study of natural Nelumbo nucifera fiber. Carbohydrate Polymers 75:39–43. doi:10.1016/j.carbpol.2008.06.003.
  • Liu, W., T. Chen, M. E. Fei, R. Qiu, D. Yu, T. Fu, and J. Qiu. 2019. Properties of natural fiber-reinforced biobased thermoset biocomposites: Effects of fiber type and resin composition. Composites Part B: Engineering 171:87–95. doi:10.1016/j.compositesb.2019.04.048.
  • Maache, M., A. Bezazi, S. Amroune, F. Scarpa, and A. Dufresne. 2017. Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydrate Polymers 171:163–72. doi:10.1016/j.carbpol.2017.04.096.
  • Mwaikambo, L. Y., and M. P. Ansell. 2002. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science 84:2222–34. doi:10.1002/app.10460.
  • NagarajaGanesh, B., and B. Rekha. 2019a. Morphology and damage mechanism of lignocellulosic fruit fibers reinforced polymer composites: A comparative study. SN Applied Sciences 1 (10):1250. doi:10.1007/s42452-019-1286-6.
  • NagarajaGanesh, B., and B. Rekha. 2019b. Effect of mercerization on the physico-chemical properties of matured and seasoned Cocos nucifera fibers for making sustainable composites. Materials Research Express 6 (12):125102. doi:10.1088/2053-1591/ab5395.
  • NagarajaGanesh, B., and B. Rekha. 2020. Intrinsic cellulosic fiber architecture and their effect on the mechanical properties of hybrid composites. Archives of Civil and Mechanical Engineering 20 (4):1–12. doi:10.1007/s43452-020-00125-y.
  • NagarajaGanesh, B., P. Ganeshan, P. Ramshankar, and K. Raja. 2019. Assessment of natural cellulosic fibers derived from Senna auriculata for making light weight industrial biocomposites. Industrial Crops and Products 139:111546. doi:10.1016/j.indcrop.2019.111546.
  • NagarajaGanesh, B., P. Sugumaran, and R. Sridhar. 2012. Mechanical properties of rice straw and chicken feather fibers. International Journal of Composite Materials and Manufacturing 2:22–26.
  • NagarajaGanesh, B., and R. Muralikannan. 2016a. Physico-chemical, thermal, and flexural characterization of Cocos nucifera fibers. International Journal of Polymer Analysis and Characterization 21 (3):244–50. doi:10.1080/1023666X.2016.1139359.
  • NagarajaGanesh, B., and R. Muralikannan. 2016b. Extraction and characterization of lignocellulosic fibers from Luffa cylindrica fruit. International Journal of Polymer Analysis and Characterization 21 (3):259–66. doi:10.1080/1023666X.2016.1146849.
  • Paiva M. C., I. Ammar, A. R. Campos, R. B. Cheikh, and A. M. Cunha 2007. Alfa fibres: Mechanical, morphological and interfacial characterization. Composites Science and Technology 67:1132–38. doi:10.1016/j.compscitech.2006.05.019.
  • Palacios Hinestroza, H., J. A. Hernández Diaz, M. Esquivel Alfaro, G. Toriz, O. J. Rojas, and B. C. Sulbarán-Rangel. 2019. Isolation and characterization of nanofibrillar cellulose from agave tequilana weber bagasse. Advances in Materials Science and Engineering 2019:1–7. doi:10.1155/2019/1342547.
  • Radhaboy, G., M. Pugazhvadivu, P. Ganeshan, K. Raja, V. Yamunadevi, K. Palaniradja, A. Thiagarajan, M. Satheesh, P. Bala, A. Manikandan, et al. 2019. Influence of kinetic parameters on Calotropis procera by TGA under pyrolytic conditions. Energy Sources Part A-Recovery Utilization and Environmental Effects. doi:10.1080/15567036.2019.1677812.
  • Raja, K., B. Prabu, P. Ganeshan, V. S. Chandra Sekar, and B. NagarajaGanesh. 2020. Characterization studies of natural cellulosic fibers extracted from Shwetark stem. Journal of Natural Fibers 1–12. doi:10.1080/15440478.2019.1710650.
  • Ramírez, C. A., F. Rol, J. Bras, A. Dufresne, N. L. Garcia, and N. D Accorso. 2019. Isolation and characterization of cellulose nanofibers from Argentine tacuara cane (Guadua Angustifolia Kunth). Journal of Renewable Materials 7:373–81. doi:10.32604/jrm.2019.04236.
  • Rekha, B., and B. NagarajaGanesh. 2020. X-ray diffraction: An efficient method to determine the microfibrillar angle of dried and matured cellulosic fibers. Journal of Natural Fibers. doi:10.1080/15440478.2020.1848720.
  • Sarikanat, M., Y. Seki, K. Sever, and C. Durmuşkahya. 2014. Determination of properties of Althaea officinalis L. (Marshmallow) fibres as a potential plant fibre in polymeric composite materials. Composites Part B: Engineering 57:180–86. doi:10.1016/j.compositesb.2013.09.041.
  • Saurabh, C. K., A. Mustapha, M. M. Masri, A. F. Owolabi, M. I. Syakir, R. Dungani, M. T. Paridah, M. Jawaid, and H. P. S. Abdul Khalil. 2016. Isolation and characterization of cellulose nanofibers from Gigantochloa scortechinii as a reinforcement material. Journal of Nanomaterials 2016. doi:10.1155/2016/4024527.
  • Segal, L., J. J. Creely, A. E. Martin Jr, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29:786–94. doi:10.1177/004051755902901003.
  • Sun, E., G. Liao, Q. Zhang, P. Qu, G. Wu, and H. Huang. 2019. Biodegradable copolymer-based composites made from straw fiber for biocomposite flowerpots application. Composites Part B: Engineering 165:193–98. doi:10.1016/j.compositesb.2018.11.121.
  • Teixeira, R. S., S. F. Santos, A. L. Christoforo, J. Paya, H. Savastano Jr, and F. R. Lahr. 2019. Impact of content and length of curauá fibers on mechanical behavior of extruded cementitious composites: Analysis of variance. Cement and Concrete Composites 102:134–44. doi:10.1016/j.cemconcomp.2019.04.022.
  • Van Soest, P. J., and R. H. Wine. 1968. Determination of lignin and cellulose in acid-detergent fiber with permanganate. Journal of the Association of Official Analytical Chemists 51 (4):780–85.
  • Vijay, R., D. L. Singaravelu, A. Vinod, M. R. Sanjay, and S. Siengchin. 2019. Characterization of alkali-treated and untreated natural fibers from the stem of Parthenium hysterophorus. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2019.1612308.
  • Vijay, R., S. Manoharan, S. Arjun, A. Vinod, and D. L. Singaravelu. 2020. Characterization of silane-treated and untreated natural fibers from stem of Leucas aspera. Journal of Natural Fibers 1–17. doi:10.1080/15440478.2019.1710651.
  • Vinod, A., R. Vijay, D. L. Singaravelu, M. R. Sanjay, S. Siengchin, Y. Yagnaraj, and S. Khan. 2019. Extraction and characterization of natural fiber from stem of Cardiospermum alicababum. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2019.1669514.
  • Yamamoto, H., T. Okuyama, and M. Yoshida. 1993. Method of determining the mean microfibril angle of wood over a wide range by the improved Cave’s method. Mokuzai Gakkaishi 39:375–81.
  • Yoganandam, K., B. NagarajaGanesh, P. Ganeshan, and K. Raja. 2019b. Thermogravimetric analysis of Calotropis procera fibers and their influence on the thermal conductivity and flammability studies of polymer composites. Materials Research Express 6 (10):105341. doi:10.1088/2053-1591/ab3bbe.
  • Yoganandam, K., P. Ganeshan, B. NagarajaGanesh, and K. Raja. 2019a. Characterization studies on Calotropis procera fibers and their performance as reinforcements in epoxy matrix. Journal of Natural Fibers 1–13. doi:10.1080/15440478.2019.1588831.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.