821
Views
12
CrossRef citations to date
0
Altmetric
Review

A Review on Chemical Modification by using Sodium Hydroxide (NaOH) to Investigate the Mechanical Properties of Sisal, Coir and Hemp Fiber Reinforced Concrete Composites

ORCID Icon, , , , &

References

  • Agrebi, F., H. Hammami, M. Asim, M. Jawaid, and A. Kallel. 2020. Impact of silane treatment on the dielectric properties of pineapple leaf/kenaf fiber reinforced phenolic composites. Journal of Composite Materials 54 (7):937–46. doi:10.1177/0021998319871351.
  • Ali, M., A. Liu, H. Sou, and N. Chouw. 2012. Mechanical and dynamic properties of coconut fiber reinforced concrete. Construction and Building Materials 30:814–25. doi:10.1016/j.conbuildmat.2011.12.068.
  • Alves, C. A. P. S., A. P. S. Dias, A. C. Diogo, P. M. C. Ferrão, S. M. Luz, A. J. Silva, L. Reis, and M. Freitas. 2011. Eco-composite: The effects of the jute fiber treatments on the mechanical and environmental performance of the composite materials. Journal of Composite Materials 45 (5):573–89. doi:10.1177/0021998310376111.
  • Arrakhiz, F. Z., M. El Achaby, A. C. Kakou, S. Vaudreuil, K. Benmoussa, R. Bouhfid, O. Fassi-Fehri, and A. Qaiss. 2012. Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: Impact of chemical treatments. Materials & Design 37:379–83. doi:10.1016/j.matdes.2012.01.020.
  • Arrakhiz, F. Z., M. Malha, R. Bouhfid, K. Benmoussa, and A. Qaiss. 2013. Tensile, flexural and torsional properties of chemically treated alfa, coir and bagasse reinforced polypropylene. Composites Part B: Engineering 47:35–41. doi:10.1016/j.compositesb.2012.10.046.
  • Arsène, M.-A., H. Savastano, S. M. Allameh, K. Ghavami, and W. O. Soboyejo. 2003. Cementitious composites reinforced with vegetable fibers. Anais da 1st inter american conference on nonconventional materials and technologies in the ecoconstruction and infrastructure. João Pessoa-PB.
  • Asim, M., M. Jawaid, K. Abdan, and M. R. Ishak. 2017. Dimensional stability of pineapple leaf fiber reinforced phenolic composites. AIP conference proceedings, Melville, NY 11747 USA.
  • Asim, M., M. Jawaid, K. Abdan, M. R. Ishak, and O. Y. Alothman. 2018a. Effect of hybridization on the mechanical properties of pineapple leaf fiber/kenaf phenolic hybrid composites. Journal of Renewable Materials 6 (1):38–46. doi:10.7569/JRM.2017.634148.
  • Asim, M., M. Jawaid, K. Abdan, and M. Nasir. 2018b. Effect of Alkali treatments on physical and Mechanical strength of Pineapple leaf fibers. IOP Conference Series: Materials Science and Engineering.
  • Asim, M., M. T. Paridah, M. Jawaid, M. Nasir, and N. Saba. 2018c. Physical and flammability properties of kenaf and pineapple leaf fiber hybrid composites. IOP Conf Ser Mater Sci Eng 368:012018. doi:10.1088/1757-899X/368/1/012018.
  • Asim, M., M. T. Paridah, N. Saba, M. Jawaid, O. Y. Alothman, M. Nasir, and Z. Almutairi. 2018d. Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites. Composite Structures 202:1330–38. doi:10.1016/j.compstruct.2018.06.068.
  • Asim, M., M. Jawaid, K. Abdan, and M. R. Ishak. 2016. Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. Journal of Bionic Engineering 13 (3):426–35. doi:10.1016/S1672-6529(16)60315-3.
  • Asim, M., M. Jawaid, M. T. Paridah, N. Saba, M. Nasir, and R. M. Shahroze. 2019. Dynamic and thermo-mechanical properties of hybridized kenaf/PALF reinforced phenolic composites. Polymer Composites 40 (10):3814–22. doi:10.1002/pc.25240.
  • Asim, M., M. T. Paridah, M. Chandrasekar, R. M. Shahroze, M. Jawaid, M. Nasir, and R. Siakeng. 2020. Thermal stability of natural fibers and their polymer composites. Cellulose 174:175.
  • Atiqah, A., M. Jawaid, M. R. Ishak, and S. M. Sapuan. 2018. Effect of alkali and silane treatments on mechanical and interfacial bonding strength of sugar palm fibers with thermoplastic polyurethane. Journal of Natural Fibers 15 (2):251–61. doi:10.1080/15440478.2017.1325427.
  • Bao, H., F. Qin, M. Xuan, and Y. Wencheng. Study on the mechanical performance of the sisal fiber concrete for pavement 2010 2nd International Conference on Computer Engineering and Technology, Bali Island, Indonesia.
  • Barreto, A. C. H., M. A. Esmeraldo, D. S. Rosa, P. B. A. Fechine, and S. E. Mazzetto. 2010. Cardanol biocomposites reinforced with jute fiber: Microstructure, biodegradability, and mechanical properties. Polymer Composites 31 (11):1928–37. doi:10.1002/pc.20990.
  • Barreto, A. C. H., D. S. Rosa, P. B. A. Fechine, and S. E. Mazzetto. 2011. Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Composites. Part A, Applied Science and Manufacturing 42 (5):492–500. doi:10.1016/j.compositesa.2011.01.008.
  • Belaadi, A., A. Bezazi, M. Bourchak, and F. Scarpa. 2013. Tensile static and fatigue behaviour of sisal fibres. Materials & Design 46:76–83. doi:10.1016/j.matdes.2012.09.048.
  • Bentur, A., and S. Mindess. 2006. Fiber reinforced cementitious composites. Crc Press, United States.
  • Bledzki, A. K., V. E. Sperber, and O. Faruk. 2002. Natural and wood fiber reinforcement in polymers, Vol. 13. iSmithers Rapra Publishing.
  • Bodros, E., I. Pillin, N. Montrelay, and C. Baley. 2007. Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Composites Science and Technology 67 (3–4):462–70. doi:10.1016/j.compscitech.2006.08.024.
  • Bonicelli, A., F. Giustozzi, M. Crispino, and M. Borsa. 2015. Evaluating the effect of reinforcing fibres on pervious concrete volumetric and mechanical properties according to different compaction energies. European Journal of Environmental and Civil Engineering 19 (2):184–98. doi:10.1080/19648189.2014.939308.
  • Boopalan, M., M. J. Umapathy, and P. Jenyfer. 2012. A comparative study on the mechanical properties of jute and sisal fiber reinforced polymer composites. Silicon 4 (3):145–49. doi:10.1007/s12633-012-9110-6.
  • Brígida, A. I. S., V. M. A. Calado, L. R. B. Gonçalves, and M. A. Z. Coelho. 2010. Effect of chemical treatments on properties of green coconut fiber. Carbohydrate Polymers 79 (4):832–38. doi:10.1016/j.carbpol.2009.10.005.
  • Budtova, T., and P. Navard. 2016. Cellulose in NaOH–water based solvents: A review. Cellulose 23 (1):5–55.
  • Bui, H., N. Sebaibi, M. Boutouil, and D. Levacher. 2020. Determination and review of physical and mechanical properties of raw and treated coconut fibers for their recycling in construction materials. Fibers 8 (6):37. doi:10.3390/fib8060037.
  • Cai, M., H. Takagi, A. N. Nakagaito, M. Katoh, T. Ueki, G. I. N. Waterhouse, and Y. Li. 2015. Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Industrial Crops and Products 65:27–35. doi:10.1016/j.indcrop.2014.11.048.
  • Chandrasekar, M., M. R. Ishak, S. M. Sapuan, Z. Leman, and M. Jawaid. 2017. A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plastics, Rubber and Composites 46 (3):119–36. doi:10.1080/14658011.2017.1298550.
  • Chen, H., M. Miao, and X. Ding. 2009. Influence of moisture absorption on the interfacial strength of bamboo/vinyl ester composites. Composites. Part A, Applied Science and Manufacturing 40 (12):2013–19. doi:10.1016/j.compositesa.2009.09.003.
  • Cho, D., S. B. Yoon, and T. Drzal. 2009. Cellulose-based natural fiber topography and the interfacial shear strength of henequen/unsaturated polyester composites: Influence of water and alkali treatments. Composite Interfaces 16 (7–9):769–79. doi:10.1163/092764409X12477447514779.
  • de Klerk, M. D., M. Kayondo, G. M. Moelich, W. I. de Villiers, R. Combrinck, and W. P. Boshoff. 2020. Durability of chemically modified sisal fibre in cement-based composites. Construction and Building Materials 241:117835. doi:10.1016/j.conbuildmat.2019.117835.
  • Dhakal, H. N., Z. Y. Zhang, and M. O. W. Richardson. 2007. Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Composites Science and Technology 67 (7–8):1674–83. doi:10.1016/j.compscitech.2006.06.019.
  • Dong, Y., A. Ghataura, H. Takagi, H. J. Haroosh, A. N. Nakagaito, and K.-T. Lau. 2014. Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties. Composites. Part A, Applied Science and Manufacturing 63:76–84. doi:10.1016/j.compositesa.2014.04.003.
  • Edeerozey, A. M. M., H. M. Akil, A. B. Azhar, and M. I. Zainal Ariffin. 2007. Chemical modification of kenaf fibers. Materials Letters 61 (10):2023–25. doi:10.1016/j.matlet.2006.08.006.
  • Eichhorn, S. J., C. A. Baillie, N. Zafeiropoulos, L. Y. Mwaikambo, M. P. Ansell, A. Dufresne, K. M. Entwistle, P. J. Herrera-Franco, G. C. Escamilla, and L. Groom. 2001. Current international research into cellulosic fibers and composites. Journal of Materials Science 36 (9):2107–31. doi:10.1023/A:1017512029696.
  • El-Shekeil, Y. A., S. M. Sapuan, K. Abdan, and E. S. Zainudin. 2011. Effect of alkali treatment and pMDI isocyanate additive on tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite Proceedings of 2011 International Conference on Advanced Materials Engineering (ICAME 2011) Gujarat, India.
  • Esmeraldo, M. A., A. C. Gomes, J. E. B. Freitas, P. B. A. Fechine, A. S. B. Sombra, E. Corradini, G. Mele, A. Maffezzoli, and S. E. Mazzetto. 2010. Dwarf-green coconut fibers: A versatile natural renewable raw bioresource. Treatment, morphology, and physicochemical properties. Bioresources 5 (4):2478–501.
  • Essabir, H., M. O. Bensalah, R. Bouhfid, and A. Qaiss. 2014. Fabrication and characterization of apricot shells particles reinforced high density polyethylene based bio-composites: Mechanical and thermal properties. Journal of Biobased Materials and Bioenergy 8 (3):344–51. doi:10.1166/jbmb.2014.1447.
  • Essabir, H., M. O. Bensalah, D. Rodrigue, R. Bouhfid, and A. Qaiss. 2016. Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles. Mechanics of Materials 93:134–44. doi:10.1016/j.mechmat.2015.10.018.
  • Faruk, O., A. K. Bledzki, H.-P. Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science 37 (11):1552–96.
  • Ferreira, J. A. M., C. Capela, and J. D. Costa. 2010. A study of the mechanical properties of natural fibre reinforced composites. Fibers and Polymers 11 (8):1181–86. doi:10.1007/s12221-010-1181-7.
  • Gañan, P., S. Garbizu, R. Llano-Ponte, and I. Mondragon. 2005. Surface modification of sisal fibers: Effects on the mechanical and thermal properties of their epoxy composites. Polymer Composites 26 (2):121–27. doi:10.1002/pc.20083.
  • Gheith, M. H., M. A. Aziz, W. Ghori, N. Saba, M. Asim, M. Jawaid, and O. Y. Alothman. 2019. Flexural, thermal and dynamic mechanical properties of date palm fibres reinforced epoxy composites. Journal of Materials Research and Technology 8 (1):853–60. doi:10.1016/j.jmrt.2018.06.013.
  • Gomes, A., T. Matsuo, K. Goda, and J. Ohgi. 2007. Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Composites. Part A, Applied Science and Manufacturing 38 (8):1811–20. doi:10.1016/j.compositesa.2007.04.010.
  • Gu, H. 2009. Tensile behaviours of the coir fibre and related composites after NaOH treatment. Materials & Design 30 (9):3931–34. doi:10.1016/j.matdes.2009.01.035.
  • Gupta, M. K., and R. K. Srivastava. 2016. Mechanical, thermal and water absorption properties of hybrid sisal/jute fiber reinforced polymer composite
  • Hakamy, A., F. U. A. Shaikh, and I. M. Low. 2015. Thermal and mechanical properties of NaOH treated hemp fabric and calcined nanoclay-reinforced cement nanocomposites. Materials & Design 80:70–81.
  • Ike-Eze, I. C., V. S. A. Ezema, S. N. Ude, A. D. Omah, and P. O. Offor. 2019. Experimental study on the effects of surface treatment reagents on tensile properties of Banana fiber reinforced polyester composites
  • Jacob, M., S. Thomas, and K. T. Varughese. 2004. Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Composites Science and Technology 64 (7–8):955–65.
  • Jacob, M., K. T. Varughese, and S. Thomas. 2006. Dielectric characteristics of sisal–oil palm hybrid biofiber reinforced natural rubber biocomposites. Journal of Materials Science 41 (17):5538–47.
  • John, M. J., and S. Thomas. 2008. Biofibers and biocomposites. Carbohydrate Polymers 71 (3):343–64.
  • John, V. M., M. A. Cincotto, C. Sjöström, V. Agopyan, and C. T. de Andrade Oliveira. 2005. Durability of slag mortar reinforced with coconut fiber. Cement and Concrete Composites 27 (5):565–74.
  • Kabir, M. M., H. Wang, K. T. Lau, and F. Cardona. 2013. Effects of chemical treatments on hemp fiber structure. Applied Surface Science 276:13–23.
  • Kaewkuk, S., W. Sutapun, and K. Jarukumjorn. 2013. Effects of interfacial modification and fiber content on physical properties of sisal fiber/polypropylene composites. Composites Part B: Engineering 45 (1):544–49.
  • Karthikeyan, A., and K. Balamurugan. 2012. Effect of alkali treatment and fiber length on impact behavior of coir fiber reinforced epoxy composites
  • Khanam, P. N., H. P. S. Abdul Khalil, G. Ramachandra Reddy, and S. Venkata Naidu. 2011. Tensile, flexural and chemical resistance properties of sisal fiber reinforced polymer composites: Effect of fiber surface treatment. Journal of Polymers and the Environment 19 (1):115–19.
  • Kim, J. T., and A. N. Netravali. 2010. Mercerization of sisal fibers: Effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites. Composites. Part A, Applied Science and Manufacturing 41 (9):1245–52.
  • Klemeš, J. J., P. S. Varbanov, and D. Huisingh. 2012. Recent cleaner production advances in process monitoring and optimisation. Journal of Cleaner Production 34:1–8.
  • Kommula, V. P., K. Obi Reddy, M. Shukla, T. Marwala, and A. Varada Rajulu. 2013. Physico-chemical, tensile, and thermal characterization of Napier grass (native African) fiber strands. International Journal of Polymer Analysis and Characterization 18 (4):303–14.
  • Kostic, M., B. Pejic, and P. Skundric. 2008. Quality of chemically modified hemp fibers. Bioresource Technology 99 (1):94–99.
  • Li, X., L. G. Tabil, and S. Panigrahi. 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment 15 (1):25–33.
  • Li, Y., H. Chunjing, and Y. Yehong. 2008. Interfacial studies of sisal fiber reinforced high density polyethylene (HDPE) composites. Composites. Part A, Applied Science and Manufacturing 39 (4):570–78.
  • Li, Z., L. Wang, and X. Wang. 2004. Compressive and flexural properties of hemp fiber reinforced concrete. Fibers and Polymers 5 (3):187–97.
  • Liebert, T. 2010. Cellulose solvents–remarkable history, bright future. In In Cellulose solvents: For analysis, shaping and chemical modification, 3–54. ACS Publications, Washington, D.C.
  • Liu, W., A. K. Mohanty, L. T. Drzal, P. Askel, and M. Misra. 2004. Effects of alkali treatment on the structure, morphology and thermal properties of native grass fibers as reinforcements for polymer matrix composites. Journal of Materials Science 39 (3):1051–54.
  • Manjula, R., N. V. Raju, R. P. S. Chakradhar, and J. Johns. 2018. Effect of thermal aging and chemical treatment on tensile properties of coir fiber. Journal of Natural Fibers 15 (1):112–21.
  • Mansour, R., R. Z. E. Abidine, and B. Brahim. 2017. Performance of polymer concrete incorporating waste marble and alfa fibers. Advances in Concrete Construction 5 (4):331.
  • Mbeche, S. M., and T. Omara. 2020. Effects of alkali treatment on the mechanical and thermal properties of sisal/cattail polyester commingled composites. PeerJ Materials Science 2:e5.
  • Merta, I., and E. K. Tschegg. 2013. Fracture energy of natural fiber reinforced concrete. Construction and Building Materials 40:991–97.
  • Mishra, S., A. K. Mohanty, L. T. Drzal, M. Misra, and G. Hinrichsen. 2004. A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromolecular Materials and Engineering 289 (11):955–74.
  • Mohammed, A. A., D. Bachtiar, J. P. Siregar, and M. R. M. Rejab. 2016. Effect of sodium hydroxide on the tensile properties of sugar palm fiber reinforced thermoplastic polyurethane composites. Journal of Mechanical Engineering and Sciences 10 (1):1765–77.
  • Mohammed, L., M. O. H. A. M. E. D. N. M. Ansari, G. Pua, M. Jawaid, and M. Saiful Islam. 2015. A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science 2015 Oct 1;2015.
  • Mohanty, A. K., M. Misra, and L. T. Aizal, Kellys. 2001. Surface modification of natural fibers and performance of the resulting biocomposites. An Overview of Composite Interfaces. 8(5), 313-343.
  • Mohanty, A. K., M. Misra, and L. T. Drzal. 2001. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Composite Interfaces 8 (5):313–43.
  • Mwaikambo, L. 2006. Review of the history, properties and application of plant fibers. African Journal of Science and Technology 7 (2):121.
  • Mwaikambo, L. Y., and M. P. Ansell. 1999. The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Die angewandte makromolekulare Chemie 272 (1):108–16.
  • Mwaikambo, L. Y., and M. P. Ansell. 2002. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science 84 (12):2222–34.
  • Mwaikambo, L. Y., and M. P. Ansell. 2003a. Hemp fiber reinforced cashew nut shell liquid composites. Composites Science and Technology 63 (9):1297–305.
  • Mwaikambo, L. Y. 2003. Plant-based resources for sustainable composites.
  • Mwaikambo, L. Y., and M. P. Ansell. 2003b. Hemp fiber reinforced cashew nut shell liquid composites. Composites Science and Technology 63 (9):1297–305.
  • Mwaikambo, L. Y., and M. P. Ansell. 2006a. Mechanical properties of alkali treated plant fibers and their potential as reinforcement materials. I. Hemp fibers. Journal of Materials Science 41 (8):2483–96.
  • Mwaikambo, L. Y., and M. P. Ansell. 2006b. Mechanical properties of alkali treated plant fibers and their potential as reinforcement materials II. Sisal fibers. Journal of Materials Science 41 (8):2497–508.
  • Mydin, M. A. O., N. Mohamad, A. A. Abdul Samad, I. Johari, and M. A. Che Munaaim. 2018. Durability performance of foamed concrete strengthened with chemical treated (NaOH) coconut fiber AIP Conference Proceedings Melville, NY 11747 USA.
  • Mydin, M. A. O., N. Mohd Zamzani, and A. N. Abdul Ghani. 2018. Effect of alkali-activated sodium hydroxide treatment of coconut fiber on mechanical properties of lightweight foamed concrete. AIP Conference Proceedings Melville, NY 11747 USA.
  • Mylsamy, K., and I. Rajendran. 2011. Influence of fiber length on the wear behaviour of chopped agave americana fiber reinforced epoxy composites. Tribology Letters 44 (1):75.
  • Nam, T. H., S. Ogihara, N. H. Tung, and S. Kobayashi. 2011. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites. Composites Part B: Engineering 42 (6):1648–56.
  • Nayak, S. K., G. Dixit, and K. K. Appukuttan. 2012. Sisal fiber (SF) reinforced recycled polypropylene (RPP) composites. International Journal of Plastics Technology 16 (2):150–65.
  • Njoku, C. E., J. A. Omotoyinbo, K. K. Alaneme, and M. O. Daramola. 2019. Chemical modification of Urena lobata (Caeser weed) fibers for reinforcement applications. Journal of Physics: Conference Series.
  • Norizan, N. M., A. Atiqah, M. N. M. Ansari, and M. Rahmah. 2020. Green materials in hybrid composites for automotive applications: green materials In Implementation and Evaluation of Green Materials in Technology Development: Emerging Research and Opportunities, 56–76. IGI Global, Pennsylvania, USA.
  • Nuzaimah, M., S. M. Sapuan, R. Nadlene, and M. Jawaid. 2020. Effect of surface treatment on the performance of polyester composite filled with waste glove rubber crumbs. Waste and Biomass Valorization 2020 Mar 1–14.
  • Orue, A., A. Jauregi, C. Peña-Rodriguez, J. Labidi, A. Eceiza, and A. Arbelaiz. 2015. The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Composites Part B: Engineering 73:132–38.
  • Otto, G. P., M. P. Moisés, G. Carvalho, A. W. Rinaldi, J. C. Garcia, E. Radovanovic, and S. L. Fávaro. 2017. Mechanical properties of a polyurethane hybrid composite with natural lignocellulosic fibers. Composites Part B: Engineering 110:459–65.
  • Pacheco-Torgal, F., and S. Jalali. 2011. Cementitious building materials reinforced with vegetable fibers: A review. Construction and Building Materials 25 (2):575–81.
  • Pandey, J. K., S. H. Ahn, C. S. Lee, A. K. Mohanty, and M. Misra. 2010. Recent advances in the application of natural fiber based composites. Macromolecular Materials and Engineering 295 (11):975–89.
  • Panesar, D., R. Leung, M. Sain, and S. Panthapulakkal. 2017. The effect of sodium hydroxide surface treatment on the tensile strength and elastic modulus of cellulose nanofiber. In In Sustainable and nonconventional construction materials using inorganic bonded fiber composites, 17–26. Elsevier, Woodhead Publishing.
  • Panigrahi, S., T. Powell, B. Wang, L. G. Tabil, W. J. Crerar, and S. Sokansanj. 2003. The effects of chemical pre-treatment on flax fiber bio-composites. ASAE Meeting Presentation, Paper Number-RRV 03–0018, 1, p.16.
  • Pickering, K. L., G. W. Beckermann, S. N. Alam, and N. J. Foreman. 2007. Optimising industrial hemp fiber for composites. Composites. Part A, Applied Science and Manufacturing 38 (2):461–68.
  • Poletto, M., H. L. Ornaghi, and A. J. Zattera. 2014. Native cellulose: Structure, characterization and thermal properties. Materials 7 (9):6105–19.
  • Prasanna Venkatesh, R., K. Ramanathan, and V. Srinivasa Raman. 2016. Tensile, flexual, impact and water absorption properties of natural fiber reinforced polyester hybrid composites. Fibers & Textiles in Eastern Europe  2016, Vol. 24, 1(115).
  • Rachini, A., M. Le Troedec, C. Peyratout, and A. Smith. 2009. Comparison of the thermal degradation of natural, alkali‐treated and silane‐treated hemp fibers under air and an inert atmosphere. Journal of Applied Polymer Science 112 (1):226–34.
  • Rahman, M. M., and M. A. Khan. 2007. Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers’ physico-mechanical properties. Composites Science and Technology 67 (11–12):2369–76.
  • Ramadan, R., G. Saad, E. Awwad, H. Khatib, and M. Mabsout. 2017. Short-term durability of hemp fibers. Procedia Engineering 200:120–27.
  • Ray, D., B. K. Sarkar, R. K. Basak, and A. K. Rana. 2004. Thermal behavior of vinyl ester resin matrix composites reinforced with alkali‐treated jute fibers. Journal of Applied Polymer Science 94 (1):123–29.
  • Reis, J. M. L., and E. P. Carneiro. 2012. Mechanical characterization of sisal fiber reinforced polymer mortars: Compressive and flexural properties. Journal of Reinforced Plastics and Composites 31 (23):1662–69.
  • Rokbi, M., H. Osmani, A. Imad, and N. Benseddiq. 2011. Effect of chemical treatment on flexure properties of natural fiber-reinforced polyester composite. Procedia Engineering 10:2092–97.
  • Rong, M. Z., M. Q. Zhang, Y. Liu, G. C. Yang, and H. M. Zeng. 2001. The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and Technology 61 (10):1437–47.
  • Rout, J., M. Misra, S. S. Tripathy, S. K. Nayak, and A. K. Mohanty. 2001. The influence of fiber treatment on the performance of coir-polyester composites. Composites Science and Technology 61 (9):1303–10.
  • Ruben, J. S., and G. Baskar. 2014. Experimental study of coir fiber as concrete reinforcement material incement based composites. International Journal of Engineering Research and Applications 4 (1):128–31.
  • Saba, N., M. Jawaid, M. T. Paridah, and O. Y. Al‐Othman. 2016. A review on flammability of epoxy polymer, cellulosic and non‐cellulosic fiber reinforced epoxy composites. Polymers for Advanced Technologies 27 (5):577–90.
  • Saba, N., M. T. Paridah, and M. Jawaid. 2015. Mechanical properties of kenaf fiber reinforced polymer composite: A review. Construction and Building Materials 76:87–96.
  • Sandrine, U. B., V. Isabelle, M. T. Hoang, and M. Chadi. 2015. Influence of chemical modification on hemp–starch concrete. Construction and Building Materials 81:208–15.
  • Sawpan, M. A., K. L. Pickering, and A. Fernyhough. 2011. Effect of various chemical treatments on the fiber structure and tensile properties of industrial hemp fibers. Composites. Part A, Applied Science and Manufacturing 42 (8):888–95.
  • Saxena, M., A. Pappu, R. Haque, and A. Sharma. 2011. Sisal fiber based polymer composites and their applications. In Cellulose fibers: Bio-and nano-polymer composites, 589–659. Springer, Berlin, Heidelberg.
  • Sedan, D., C. Pagnoux, T. Chotard, A. Smith, D. Lejolly, V. Gloaguen, and P. Krausz. 2007. Effect of calcium rich and alkaline solutions on the chemical behaviour of hemp fibers. Journal of Materials Science 42 (22):9336–42.
  • Sedan, D., C. Pagnoux, A. Smith, and T. Chotard. 2008. Mechanical properties of hemp fiber reinforced cement: Influence of the fiber/matrix interaction. Journal of the European Ceramic Society 28 (1):183–92.
  • Shahzad, A. 2012. Hemp fiber and its composites–a review. Journal of Composite Materials 46 (8):973–86.
  • Shalwan, A., M. Alajmi, and A. Alajmi. 2017. Insulation characteristics of sisal fiber/epoxy composites. International Journal of Polymer Science 2017, Jan 1;2017.
  • Shinoj, S., R. Visvanathan, S. Panigrahi, and M. Kochubabu. 2011. Oil palm fiber (OPF) and its composites: A review. Industrial Crops and Products 33 (1):7–22.
  • Siakeng, R., M. Jawaid, M. Asim, N. Saba, M. R. Sanjay, S. Siengchin, and H. Fouad. 2020a. Alkali treated coir/pineapple leaf fibers reinforced PLA hybrid composites: Evaluation of mechanical, morphological, thermal and physical properties. eXPRESS Polymer Letters 14:8.
  • Siakeng, R., M. Jawaid, P. M. Tahir, S. Siengchin, and M. Asim. 2020b. Improving the properties of pineapple leaf fibers by chemical treatments. In Pineapple leaf fibers, 55–71. Springer, Singapore, 2020.
  • Siakeng, R., M. Jawaid, H. Ariffin, and M. S. Salit. 2018. Effects of surface treatments on tensile, thermal and fiber-matrix bond strength of coir and pineapple leaf fibers with poly lactic acid. Journal of Bionic Engineering 15 (6):1035–46.
  • Snoeck, D., P.-A. Smetryns, and D. B. Nele. 2015. Improved multiple cracking and autogenous healing in cementitious materials by means of chemically-treated natural fibers. Biosystems Engineering 139:87–99.
  • Sood, M., and G. Dwivedi. 2017. Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egyptian Journal of Petroleum 27(4), pp.775-783.
  • Sooksaen, P., V. Boodpha, P. Janrawang, and P. Songkasupa. 2018. Fabrication of lightweight concrete composites using natural fibers in Thailand. Key Engineering Materials 2018 (Vol. 765, pp. 305-308). Trans Tech Publications Ltd.
  • Sreekumar, P. A., S. P. Thomas, J. Marc Saiter, K. Joseph, G. Unnikrishnan, and S. Thomas. 2009. Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Composites. Part A, Applied Science and Manufacturing 40 (11):1777–84.
  • Stevulova, N., J. Cigasova, P. Purcz, I. Schwarzova, F. Kacik, and A. Geffert. 2015. Water absorption behavior of hemp hurds composites. Materials 8 (5):2243–57.
  • Sullins, T., S. Pillay, A. Komus, and H. Ning. 2017. Hemp fiber reinforced polypropylene composites: The effects of material treatments. Composites Part B: Engineering 114:15–22.
  • Symington, M. C., O. S. David-West, W. M. Banks, R. A. Pethrick, and J. L. Thomason. 2008. The effect of alkalisation on the mechanical properties of natural fibers 13th European Conference on Composite Materials (EECM 13) 2008-06-02 - 2008-06-05, Stockholm, Sweden.
  • Tesfay, A. G., M. B. Kahsay, and P. S. Senthil Kumar. 2020. Effects of chemical treatment, hybridization, and hybrid fiber stacking sequence and orientation on tensile and impact strength of continuous sisal fiber reinforced polyester composites. Journal of Natural Fibers 2020 Sep 291–13.
  • Tragoonwichian, S., N. Yanumet, and H. Ishida. 2007. Effect of fiber surface modification on the mechanical properties of sisal fiber‐reinforced benzoxazine/epoxy composites based on aliphatic diamine benzoxazine. Journal of Applied Polymer Science 106 (5):2925–35.
  • Vallo, C., J. M. Kenny, A. Vazquez, and V. P. Cyras. 2004. Effect of chemical treatment on the mechanical properties of starch-based blends reinforced with sisal fiber. Journal of Composite Materials 38 (16):1387–99.
  • Van de Weyenberg, I., T. Chi Truong, B. Vangrimde, and I. Verpoest. 2006. Improving the properties of UD flax fiber reinforced composites by applying an alkaline fiber treatment. Composites. Part A, Applied Science and Manufacturing 37 (9):1368–76.
  • Wei, J., and C. Meyer. 2014. Improving degradation resistance of sisal fiber in concrete through fiber surface treatment. Applied Surface Science 289:511–23.
  • Yan, L., and N. Chouw. 2015. Effect of water, seawater and alkaline solution ageing on mechanical properties of flax fabric/epoxy composites used for civil engineering applications. Construction and Building Materials 99:118–27.
  • Yan, L., N. Chouw, L. Huang, and B. Kasal. 2016. Effect of alkali treatment on microstructure and mechanical properties of coir fibers, coir fiber reinforced-polymer composites and reinforced-cementitious composites. Construction and Building Materials 112:168–82.
  • Yan, L., N. Chouw, and X. Yuan. 2012. Improving the mechanical properties of natural fiber fabric reinforced epoxy composites by alkali treatment. Journal of Reinforced Plastics and Composites 31 (6):425–37.
  • Zampaloni, M., F. Pourboghrat, S. A. Yankovich, B. N. Rodgers, J. Moore, L. T. Drzal, A. K. Mohanty, and M. Misra. 2007. Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions. Composites. Part A, Applied Science and Manufacturing 38 (6):1569–80.
  • Zegaoui, A., M. Derradji, M. Rui-kun, W.-A. Cai, A. Medjahed, W.-B. Liu, A. Q. Dayo, J. Wang, and G.-X. Wang. 2018. Influence of fiber volume fractions on the performances of alkali modified hemp fibers reinforced cyanate ester/benzoxazine blend composites. Materials Chemistry and Physics 213:146–56.
  • Zhang, Z., L. Yan, and C. Chen. 2017. Synergic effects of cellulose nanocrystals and alkali on the mechanical properties of sisal fibers and their bonding properties with epoxy. Composites. Part A, Applied Science and Manufacturing 101:480–89.
  • Zhou, Q., D. Cho, B. K. Song, and H.-J. Kim. 2009. Novel jute/polycardanol biocomposites: Effect of fiber surface treatment on their properties. Composite Interfaces 16 (7–9):781–95.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.