325
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Development of Activated Carbon from Pineapple Crown Wastes and Its Potential Use for Removal of Methylene Blue

, , &

References

  • Alver, E., A. Ü. Metin, and F. Brouers. 2020. Methylene blue adsorption on magnetic alginate/rice husk bio-composite. International Journal of Biological Macromolecules 154:104–13. doi:10.1016/j.ijbiomac.2020.02.330.
  • Araújo, C. S. T., I. L. S. Almeida, H. C. Rezende, S. M. L. O. Marcionilio, J. J. L. Léon, and T. N. de Matos. 2018. Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal 137:348–54. doi:10.1016/j.microc.2017.11.009.
  • Astuti, W., T. Sulistyaningsih, E. Kusumastuti, G. Y. R. S. Thomas, and R. Y. Kusnadi. 2019. Thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal. Bioresource Technology 287:121426. doi:10.1016/j.biortech.2019.121426.
  • Awasthi, M. K., S. Sarsaiya, A. Patel, A. Juneja, R. P. Singh, B. Yan, S. K. Awasthi, A. Jain, T. Liu, Y. Duan, et al. 2020. Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renewable and Sustainable Energy Reviews 127:109876. doi:10.1016/j.rser.2020.109876.
  • Banerjee, S., A. Arora, R. Vijayaraghavan, and A. F. Patti. 2020. Extraction and crosslinking of bromelain aggregates for improved stability and reusability from pineapple processing waste. International Journal of Biological Macromolecules 158:318–26. doi:10.1016/j.ijbiomac.2020.04.220.
  • Barbosa, A. S., L. A. M. Siqueira, R. L. B. A. Medeiros, D. M. A. Melo, M. A. F. Melo, J. C. O. Freitas, and R. M. Braga. 2019. Renewable aromatics through catalytic flash pyrolysis of pineapple crown leaves using HZSM-5 synthesized with RHA and diatomite. Waste Management 88:347–55. doi:10.1016/j.wasman.2019.03.052.
  • Beltrame, K. K., A. L. Cazetta, P. S. C. de Souza, L. Spessato, T. L. Silva, and V. C. Almeida. 2018. Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicology and Environmental Safety 147:64–71. doi:10.1016/j.ecoenv.2017.08.034.
  • Canales-Flores, R. A., and F. Prieto-García. 2020. Taguchi optimization for production of activated carbon from phosphoric acid impregnated agricultural waste by microwave heating for the removal of methylene blue. Diamond & Related Materials 109:108027. doi:10.1016/j.diamond.2020.10802.
  • Castro, J. P., J. R. C. Nobre, M. L. Bianchi, P. F. Trugilho, A. Napoli, B. Chiou, T. G. Williams, D. F. Wood, R. J. Avena-Bustillos, W. J. Orts, et al. 2018. Activated carbons prepared by physical activation from different pretreatments of amazon piassava fibers. Journal of Natural Fibers 16:961–76. doi:10.1080/15440478.2018.1442280.
  • Da Silva, C. C., A. F. Lima, J. A. Moreto, S. Dantas, M. A. Henrique, D. Pasquini, E. C. Rangel, J. Scarmínioe, and R. V. Gelamo. 2020. Influence of plasma treatment on the physical and chemical properties of sisal fibers and environmental application in adsorption of methylene blue. Materials Today Communications 23:101140. doi:10.1016/j.mtcomm.2020.101140.
  • Dao, T. M., and T. L. Luu. 2020. Synthesis of activated carbon from macadamia nutshells activated by H2SO4 and K2CO3 for methylene blue removal in water. Bioresource Technology Reports 12:100583. doi:10.1016/j.biteb.2020.100583.
  • Dehghani, M. H., R. R. Karri, Z. T. Yeganeh, A. H. Mahvi, H. Nourmoradi, M. Salari, and A. M. Zarei. 2020. Sillanpää. Statistical modelling of endocrine disrupting compounds adsorption onto activated carbon prepared from wood using CCD-RSM and DE hybrid evolutionary optimization framework: Comparison of linear vs non-linear isotherm and kinetic parameters. Journal of Molecular Liquids 30:112526. doi:10.1016/j.molliq.2020.112526.
  • Doğan, M., P. Sabaz, Z. Bicil, B. Koçer Kizilduman, and Y. Turhan. 2020. Activated carbon synthesis from tangerine peel and its use in hydrogen storage. Journal of the Energy Institute 93 (6):2176–85. doi:10.1016/j.joei.2020.05.011.
  • Efimov, M. N., A. A. Vasilev, D. G. Muratov, A. E. Baranchikov, and G. P. Karpacheva. 2019. IR radiation assisted preparation of KOH-activated polymer-derived carbon for methylene blue adsorption. Journal of Environmental Chemical Engineering 7 (6). doi: 10.1016/j.jece.2019.103514.
  • Embrapa. EU and Embrapa expand partnership against food waste. Accessed August 2020 12, 2020. https://www.embrapa.br/en/busca-de-noticias/-/noticia/46569235/eu-and-embrapa-expand-partnership-against-food-wast.
  • Enniya, I., L. Rghioui, and A. Jourani. 2018. Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustainable Chemistry and Pharmacy 7:9–16. doi:10.1016/j.scp.2017.11.003.
  • Fu, X., H. Yang, H. Sun, G. Lu, and J. Wu. 2016. The multiple roles of ethylenediamine modification at TiO2/activated carbon in determining adsorption and visible-light-driven photoreduction of aqueous Cr(VI). Journal of Alloys and Compounds 662:165–72. doi:10.1016/j.jallcom.2015.12.019.
  • Gangulya, P., R. Sarkhelb, and P. Dasa. 2020. Synthesis of pyrolyzed biochar and its application for dye removal: Batch, kinetic and isotherm with linear and non-linear mathematical analysis. Surfaces and Interfaces 20:100616. doi:10.1016/j.surfin.2020.100616.
  • Giusto, L. A. R., F. L. Pissetti, T. S. Castro, and F. Magalhães. 2017. Preparation of activated carbon from sugarcane bagasse soot and methylene blue adsorption. Water, Air, and Soil Pollution 228 (7). doi: 10.1007/s11270-017-3422-5.
  • Haghbin, M. R., and M. N. Shahrak. 2021. Process conditions optimization for the fabrication of highly porous activated carbon from date palm bark wastes for removing pollutants from water. Powder Technology 377:890–99. doi:10.1016/j.powtec.2020.09.051.
  • Jawad, A. H., R. A. Rashid, M. A. M. Ishak, and K. Ismail. 2018. Adsorptive removal of methylene blue by chemically treated cellulosic waste banana (Musa sapientum) peels. Journal of Taibah University for Science 12 (6):809–19. doi:10.1080/16583655.2018.1519893.
  • Kamaraj, M., N. R. Srinivasan, G. Assefa, A. T. Adugna, and M. Kebede. 2020. Facile development of sunlit ZnO nanoparticles-activated carbon hybrid from pernicious weed as an operative nano-adsorbent for removal of methylene blue and chromium from aqueous solution: Extended application in tannery industrial wastewater. Environmental Technology and Innovation 17:100540. doi:10.1016/j.eti.2019.100540.
  • Kankılıç, G. B., and A. Ü. Metin. 2020. Phragmites australis as a new cellulose source: Extraction, characterization and adsorption of methylene blue. Journal of Molecular Liquids 312:113313. doi:10.1016/j.molliq.2020.113313.
  • Kerni, L., S. Singh, A. Patnaik, and N. Kumar. 2020. A review on natural fiber reinforced composites. Materials Today: Proceedings 28. doi:10.1016/j.matpr.2020.04.851.
  • Kim, H. S., Y. H. Park, S. Kim, and Y. E. Choi. 2020a. Application of a polyethylenimine-modified polyacrylonitrile-biomass waste composite fiber sorbent for the removal of a harmful cyanobacterial species from an aqueous solution. Environmental Research 190:109997. doi:10.1016/j.envres.2020.109997.
  • Kim, S., Y. H. Park, J. B. Lee, H. S. Kim, and Y. E. Choi. 2020. Phosphorus adsorption behavior of industrial waste biomass-based adsorbent, esterified polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers in aqueous solution. Journal of Hazardous Materials 400:123217.
  • Kim, S., Y. H. Park, J. B. Lee, H. S. Kim, and Y. E. Choi. 2020b. Phosphorus adsorption behavior of industrial waste biomass-based adsorbent, esterified polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers in aqueous solution. Journal of Hazardous Materials 400:123217. doi:10.1016/j.jhazmat.2020.123217.
  • Li, H., L. Liu, J. Cui, J. Cui, F. Wang, and F. Zhang. 2020a. High-efficiency adsorption and regeneration of methylene blue and aniline onto activated carbon from waste edible fungus residue and its possible mechanism. The Royal Society of Chemistry 10:14262. doi:10.1039/d0ra01245a.
  • Li, Z., H. Hanafy, L. Zhang, L. Sellaoui, M. Schadeck Netto, M. L. S. Oliveira, M. K. Seliem, G. Luiz Dotto, A. Bonilla-Petriciolet, and Q. Li. 2020b. Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations. Chemical Engineering Journal 388:124263. doi:10.1016/j.cej.2020.124263.
  • Liu, J., C. He, F. Shen, K. Zhang, and S. Zhu. 2017. The crown plays an important role in maintaining quality of harvested pineapple. Postharvest Biology and Technology 124:18–24. doi:10.1016/j.postharvbio.2016.09.007.
  • Mahamad, M. N., M. A. A. Zaini, and Z. A. Zakaria. 2015. Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. International Biodeterioration and Biodegradation 102:274–80. doi:10.1016/j.ibiod.2015.03.009.
  • Mistar, E. M., T. Alfatah, and M. D. Supardan. 2020. Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two-step KOH activation. Journal of Materials Research and Technology 9 (3):6278–86. doi:10.1016/j.jmrt.2020.03.041.
  • Montalvo Andia, J., A. Larrea, J. Salcedo, J. Reyes, L. Lopez, and L. Yokoyama. 2020. Synthesis and characterization of chemically activated carbon from Passiflora ligularis, Inga feuilleei and native plants of South America. Journal of Environmental Chemical Engineering 8 (4):103892. doi:10.1016/j.jece.2020.103892.
  • Ngan, T. T. K., L. T. T. Nhi, L. H. Sinh, T. D. Lam, N. Q. Vinh, P. T. Minh, and L. V. Thuan. 2020. Facile Synthesis of Fe3O4 nanoparticles loaded on activated carbon developed from lotus seed pods for removal of Ni(II) ions. Journal of Nano Research 61:1–17. doi:10.4028/.scientific.net/JNanoR.61.1.
  • Om Prakash, M., G. Raghavendra, S. Ojha, and M. Panchal. 2020. Characterization of porous activated carbon prepared from arhar stalks by single step chemical activation method. Materials Today: Proceedings. doi:10.1016/j.matpr.2020.05.370.
  • Özsin, G., A. E. Pütün, K. Nakabayashi, J. Miyawaki, and S. H. Yoon. 2019. Environmental-friendly production of carbon fiber from isotropic hybrid pitches synthesized from waste biomass and polystyrene with ethylene bottom oil. Journal of Cleaner Production 239:118025. doi:10.1016/j.jclepro.2019.118025.
  • Pathania, D., S. Sharma, and P. Singh. 2017. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry 10:S1445–S1451. doi:10.1016/j.arabjc.2013.04.021.
  • Pereira, P. H. F., H. L. Ornaghi Júnior, L. V. Coutinho, B. Duchemin, and M. O. H. Cioffi. 2020. Obtaining cellulose nanocrystals from pineapple crown fibers by free-chlorite hydrolysis with sulfuric acid: Physical, chemical and structural characterization. Cellulose 27 (10):5745–56. doi:10.1007/s10570-020-03179-6.
  • Prado, K. S., and M. A. S. Spinacé. 2019. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. International Journal of Biological Macromolecules 122:410–16. doi:10.1016/j.ijbiomac.2018.10.187.
  • Ren, Z., B. Jia, G. Zhang, X. Fu, Z. Wang, P. Wang, and L. Lv. 2021. Study on adsorption of ammonia nitrogen by iron-loaded activated carbon from low temperature wastewater. Chemosphere 262:127895. doi:10.1016/j.chemosphere.2020.127895.
  • Sadeek, S. A., E. A. Mohammed, M. Shaban, M. T. H. Abou Kana, and N. A. Negm. 2020. Synthesis, characterization and catalytic performances of activated carbon-doped transition metals during biofuel production from waste cooking oils. Journal of Molecular Liquids 306:112749. doi:10.1016/j.molliq.2020.112749.
  • Saldarriaga-Hernandez, S., G. Hernandez-Vargas, H. M. N. Iqbal, D. Barceló, and R. Parra-Saldívar. 2020. Bioremediation potential of Sargassum sp. biomass to tackle pollution in coastal ecosystems: Circular economy approach. Science of the Total Environment 715:136978. doi:10.1016/j.scitotenv.2020.136978.
  • Schultz, J., G. Capobianco, P. A. da Silva Veiga, M. R. Fornari, A. R. Antonangelo, S. M. Tebcherani, A. S. Mangrich, and S. A. Pianaro. 2020. Sustainable activated carbon obtained as a by-product of the sugar and alcohol industry for removal of amoxicillin from aqueous solution. Energy, Ecology and Environment 5 (6):433–43. doi:10.1007/s40974-020-00173-3.
  • Seifi, H., and S. Masoum. 2020. Ultrasonically assisted removal of toxic dye using Iranian bituminous coal based‑activated carbon: Synthesis, characterization, modeling, equilibrium and kinetic studies. Journal of the Iranian Chemical Society 302:112526. doi:10.1007/s13738-020-01974-3.
  • Sherwood, J. 2020. The significance of biomass in a circular economy. Bioresource Technology 300:122755. doi:10.1016/j.biortech.2020.122755.
  • Somsesta, N., V. Sricharoenchaikul, and D. Aht-Ong. 2020. Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: Equilibrium and kinetic studies. Materials Chemistry and Physics 240:122221. doi:10.1016/j.matchemphys.2019.122221.
  • Taer, E., A. Apriwandi, Y. S. Ningsih, R. Taslim, and Agustino. 2019. Preparation of activated carbon electrode from pineapple crown waste for supercapacitor application. International Journal of Electrochemical Science 14 (3):2462–75. doi:10.20964/2019.03.17.
  • Thabede, M. P., N. D. Shooto, and E. B. Naidoo. 2020. Removal of methylene blue dye and lead ions from aqueous solution using activated carbon from black cumin seeds. South African Journal of Chemical Engineering 33:39–50. doi:10.1016/j.sajce.2020.04.002.
  • Üner, O. 2019. Hydrogen storage capacity and methylene blue adsorption performance of activated carbon produced from Arundo donax. Materials Chemistry and Physics 237:121858. doi:10.1016/j.matchemphys.2019.121858.
  • Viscusi, G., G. Barra, and G. Gorrasi. 2020. Modification of hemp fibers through alkaline attack assisted by mechanical milling: Effect of processing time on the morphology of the system. Cellulose. doi:10.1007/s10570-020-03406-0.
  • Vu, M. T., H. P. Chao, T. Van Trinh, T. T. Le, C. C. Lin, and H. N. Tran. 2018. Removal of ammonium from groundwater using NaOH-treated activated carbon derived from corncob wastes: Batch and column experiments. Journal of Cleaner Production 180:560–70. doi:10.1016/j.jclepro.2018.01.104.
  • Wang, H., L. Shan, Q. Lv, S. Cai, G. Quan, and J. Yan. 2020. Production of hierarchically porous carbon from natural biomass waste for efficient organic contaminants adsorption. Journal of Cleaner Production 263:121352. doi:10.1016/j.jclepro.2020.121352.
  • Xu, H., P. Zhang, S. Zhou, and Q. F. Jia. 2020. Functionalized magnetic molecularly imprinted polymer: Synthesis, characterization and application for efficient adsorption of methylene blue. Chinese Journal Of Analytical Chemistry 48 (9):e20107–e2011. doi:10.1016/S1872-2040(20)60045-7.
  • Zbair, M., K. Ainassaari, A. Drif, S. Ojala, M. Bottlinger, M. Pirilä, R. L. Keiski, M. Bensitel, and R. Brahmi. 2017. Toward new benchmark adsorbents: Preparation and characterization of activated carbon from argan nut shell for bisphenol A removal. Environmental Science and Pollution Research 25 (2):1869–82. doi:10.1007/s11356-017-0634-6.
  • Zhang, J., C. Wu, D. Yu, and Y. Zhu. 2020. Structural characterization of soluble lignin in the pre-hydrolysis liquor of bamboo-willow dissolving pulp. BioResources 15 (1):825–39. doi:10.15376/biores.15.1.825-839.
  • Zhao, C., Q. Shao, and S. P. S. Chundawat. 2020. Recent advances on ammonia-based pretreatments of lignocellulosic biomass. Bioresource Technology 298:122446. doi:10.1016/j.biortech.2019.122446.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.