265
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Influence of Fine Structure on the Variations of Thermal and Mechanical Properties in Flax Fibers Modified with Different Alkaline Treatment Conditions

, &

References

  • Aly, M., M. S. J. Hashmi, A. G. Olabi, K. Y. Benyounis, M. Messeiry, A. I. Hussain, and E. F. Abadir. 2012. Optimization of Alkaline Treatment Conditions of Flax Fiber Using Box–Behnken Method. Journal of Natural Fibers 9 (4):256–76. doi:10.1080/15440478.2012.738036.
  • Arbelaiz, A., B. Fernández, J. A. Ramos, and I. Mondragon. 2006. Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: Effect of treatments. Thermochimica Acta 440 (2):111–21. doi:10.1016/j.tca.2005.10.016.
  • Badji, C., J. Beigbeder, H. Garay, A. Bergeret, J.-C. Bénézet, and V. Desauziers. 2018. Under glass weathering of hemp fibers reinforced polypropylene biocomposites: Impact of Volatile Organic Compounds emissions on indoor air quality. Polymer Degradation and Stability 149:85–95. doi:10.1016/j.polymdegradstab.2018.01.020.
  • Beckermann, G. W., and K. L. Pickering. 2008. Engineering and evaluation of hemp fibre reinforced polypropylene composites: Fibre treatment and matrix modification. Composites. Part A, Applied Science and Manufacturing 39 (6):979–88. doi:10.1016/j.compositesa.2008.03.010.
  • Duchemin, B., A. Thuault, A. Vicente, B. Rigaud, C. Fernandez, and S. Eve. 2012. Ultrastructure of cellulose crystallites in flax textile fibres. Cellulose 19 (6):1837–54. doi:10.1007/s10570-012-9786-1.
  • French, A. D. 2013. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21 (2):885–96. doi:10.1007/s10570-013-0030-4.
  • Gassan, J., and A. K. Bledzki. 1999. Alkali treatment of jute fibers: Relationship between structure and mechanical properties. Journal of Applied Polymer Science 71(4):623–29. Aid-app14>3.0.Co;2-k. doi:10.1002/(sici)1097-4628(19990124)71:4<623::.
  • Hajiha, H., M. Sain, and L. H. Mei. 2014. Modification and Characterization of Hemp and Sisal Fibers. Journal of Natural Fibers 11 (2):144–68. doi:10.1080/15440478.2013.861779.
  • Hishikawa, Y., E. Togawa, and T. Kondo. 2017. Characterization of Individual Hydrogen Bonds in Crystalline Regenerated Cellulose Using Resolved Polarized FTIR Spectra. ACS Omega 2 (4):1469–76. doi:10.1021/acsomega.6b00364.
  • Jähn, A., M. Schröder, M. Fueting, K. Schenzel, and W. Diepenbrock. 2002. Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 58 (10):2271–79. doi:10.1016/S1386-1425(01)00697-7.
  • Kabir, M. M., H. Wang, K. T. Lau, and F. Cardona. 2013a. Effects of chemical treatments on hemp fibre structure. Applied Surface Science 276:13–23. doi:10.1016/j.apsusc.2013.02.086.
  • Kabir, M. M., H. Wang, K. T. Lau, and F. Cardona. 2013b. Tensile properties of chemically treated hemp fibres as reinforcement for composites. Composites Part B: Engineering 53:362–68. doi:10.1016/j.compositesb.2013.05.048.
  • Kolpak, F. J., and J. Blackwell. 1976. Determination of the Structure of Cellulose II. Macromolecules 9 (2):273–78. doi:10.1021/ma60050a019.
  • Le Troedec, M., D. Sedan, C. Peyratout, J. P. Bonnet, A. Smith, R. Guinebretiere, V. Gloaguen, and P. Krausz. 2008. Influence of various chemical treatments on the composition and structure of hemp fibres. Composites. Part A, Applied Science and Manufacturing 39 (3):514–22. doi:10.1016/j.compositesa.2007.12.001.
  • Leppänen, K., S. Andersson, M. Torkkeli, M. Knaapila, N. Kotelnikova, and R. Serimaa. 2009. Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16 (6):999–1015. doi:10.1007/s10570-009-9298-9.
  • Merlin, A., H. Tozlu, S. Kemaloglu, A. Aytac, and G. Ozkoc. 2010. Effects of Alkali Treatment on the Properties of Short Flax Fiber–Poly(Lactic Acid) Eco-Composites. Journal of Polymers and the Environment 19 (1):11–17. doi:10.1007/s10924-010-0233-9.
  • Michell, A. J. 1988. Second derivative F.t.-i.r. spectra of celluloses I and II and related mono- and oligo-saccharides. Carbohydrate Research 173 (2):185–95. doi:10.1016/S0008-6215(00)90814-0.
  • Nishimura, H., and A. Sarko. 1987. Mercerization of cellulose. III. Changes in crystallite sizes. Journal of Applied Polymer Science 33 (3):855–66. doi:10.1002/app.1987.070330314.
  • Nishino, T., K. Takano, and K. Nakamae. 1995. Elastic modulus of the crystalline regions of cellulose polymorphs. Journal of Polymer Science. Part B, Polymer Physics 33 (11):1647–51. doi:10.1002/polb.1995.090331110.
  • Oh, S. Y., D. I. Yoo, Y. Shin, H. C. Kim, H. Y. Kim, Y. S. Chung, W. H. Park, and J. H. Youk. 2005. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydrate Research 340 (15):2376–91. doi:10.1016/j.carres.2005.08.007.
  • Okano, T., and A. Sarko. 1985. Mercerization of cellulose. II. Alkali–cellulose intermediates and a possible mercerization mechanism. Journal of Applied Polymer Science 30 (1):325–32. doi:10.1002/app.1985.070300128.
  • Ouajai, S., and R. A. Shanks. 2005. Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polymer Degradation and Stability 89 (2):327–35. doi:10.1016/j.polymdegradstab.2005.01.016.
  • Poletto, M., H. L. Ornaghi, and A. J. Zattera. 2014. Native Cellulose: Structure, Characterization and Thermal Properties. Materials (Basel) 7 (9):6105–19. doi:10.3390/ma7096105.
  • Rachini, A., M. Le Troedec, C. Peyratout, and A. Smith. 2009. Comparison of the thermal degradation of natural, alkali-treated and silane-treated hemp fibers under air and an inert atmosphere. Journal of Applied Polymer Science 112 (1):226–34. doi:10.1002/app.29412.
  • Reddy, R. V., S. D. Mohana Krishnudu, P. Rajendra Prasad, and P. Venkateshwar Reddy. 2020. Alkali Treatment Influence on Characterization of Setaria Italic (Foxtail Millet) Fiber Reinforced Polymer Composites Using Vacuum Bagging. Journal of Natural Fibers 1–13. doi:10.1080/15440478.2020.1788494.
  • Saha, S. C., P. K. Ray, S. N. Pandey, and K. Goswami. 1991. IR and X-ray diffraction studies of raw and chemically treated pineapple leaf fiber (PALF). Journal of Applied Polymer Science 42 (10):2767–72. doi:10.1002/app.1991.070421015.
  • Sarko, A., and R. Muggli. 1974. Packing Analysis of Carbohydrates and Polysaccharides. III. Valonia Cellulose and Cellulose II. Macromolecules 7 (4):486–94. doi:10.1021/ma60040a016.
  • Sghaier, B., A. E. Oudiani, Y. Chaabouni, S. Msahli, and F. Sakli. 2012. Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber. Industrial Crops and Products 36 (1):257–66. doi:10.1016/j.indcrop.2011.09.012.
  • Thygesen, A., J. Oddershede, H. Lilholt, A. B. Thomsen, and S. Kenny. 2005. On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12 (6):563–76. doi:10.1007/s10570-005-9001-8.
  • Turki, A., A. E. Oudiani, S. Msahli, and F. Sakli. 2018. Investigation of OH bond energy for chemically treated alfa fibers. Carbohydrate Polymers 186:226–35. doi:10.1016/j.carbpol.2018.01.030.
  • Viju, S., and G. Thilagavathi. 2020. Effect of Alkali Treatment of Nettle Fibers on Oil Absorbency. Journal of Natural Fibers 1–10. doi:10.1080/15440478.2020.1723776.
  • Wang, J., and J. Liu. 2009. Surface modification of textiles by aqueous solutions. In Surface Modification of Textiles, ed. Q. Wei. 269-295. Cambridge, England: Woodhead Publishing.
  • Yao, W., Y. Weng, and J. M. Catchmark. 2020. Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose 27 (10):5563–79. doi:10.1007/s10570-020-03177-8.
  • Zhao, D., Y. Deng, D. Han, L. Tan, Y. Ding, Z. Zhou, H. Xu, and Y. Guo. 2019. Exploring structural variations of hydrogen-bonding patterns in cellulose during mechanical pulp refining of tobacco stems. Carbohydrate Polymers 204:247–54. doi:10.1016/j.carbpol.2018.10.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.