282
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Synergetic Enhancement of Mechanical Properties for Silk Fibers by a Green Feeding Approach with Nano-hydroxyapatite/collagen Composite Additive

, , , , , , , , ORCID Icon & show all

References

  • Cai, L., H. Shao, X. Hu, and Y. Zhang. 2015. Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles. ACS Sustainable Chemistry Engineering 3:2551–57. doi:10.1021/acssuschemeng.5b00749.
  • Cheng, L., H. Huang, S. Chen, W. Wang, F. Dai, and H. Zhao. 2017. Characterization of silkworm larvae growth and properties of silk fibres after direct feeding of copper or silver nanoparticles. Materials & Design 129:125–34. doi:10.1016/j.matdes.2017.04.096.
  • Cheng, L., H. P. Zhao, H. M. Huang, B. Li, R. K. Y. Li, X. Q. Feng, and F. Y. Dai. 2019. Quantum dots-reinforced luminescent silkworm silk with superior mechanical properties and highly stable fluorescence. Journal of Materials Science 54:9945–57. doi:10.1007/s10853-019-03469-w.
  • Chung da, E., H. H. Kim, M. K. Kim, K. H. Lee, Y. H. Park, and I. C. Um. 2015. Effects of different Bombyx mori silkworm varieties on the structural characteristics and properties of silk. International Journal of Biological Macromolecules 79:943–51. doi:10.1016/j.ijbiomac.2015.06.012.
  • Fernandes, J., D. Nicodemo, J. E. Oliveira, F. A. Silva, M. E. A. Fidelis, L. E. Silva, and G. H. D. Tonoli. 2016. Enhanced silk performance by enriching the silkworm diet with bordeaux mixture. Journal of Materials Science 52:2684–93. doi:10.1007/s10853-016-0559-3.
  • Guo, Z., W. Xie, Q. Gao, D. Wang, F. Gao, S. R. Li, and L. Y. Zhao. 2017. In situ, biomineralization by silkworm feeding with ion precursors for the improved mechanical properties of silk fiber. International Journal of Biological Macromolecules 109:21–26. doi:10.1016/j.ijbiomac.2017.12.029.
  • Holland, C., K. Numata, J. Rnjak-Kovacina, and F. P. Seib. 2019. The biomedical use of silk: Past, present, future. Advanced Healthcare Materials 8:e1800465. doi:10.1002/adhm.201800465.
  • Hu, K., F. Cui, Q. Lv, J. Ma, Q. Feng, L. Xu, and D. Fan. 2008. Preparation of fibroin/recombinant human-like collagen scaffold to promote fibroblasts compatibility. Journal of Biomedical Materials Research Part A 84:483–90. doi:10.1002/jbm.a.31440.
  • Jiang, L. H., and Q. Shen. 2019. Directly obtaining high-strength silk fiber from silkworm fed with commercial protein powder. The Journal of the Textile Institute 110:1755–59. doi:10.1080/00405000.2019.1618042.
  • Ke, J., Y. Zhu, J. Zhang, J. Yang, H. Guo, W. Zhao, C. Wen, and L. Zhang. 2019. Size-dependent uptake and distribution of AgNPs by silkworms. ACS Sustainable Chemistry & Engineering 8:460–68. doi:10.1021/acssuschemeng.9b05799.
  • Koh, L.-D., Y. Cheng, C. P. Teng, Y. W. Khin, X. J. Loh, S. Y. Tee, M. Low, E. Ye, H. D. Yu, Y. W. Zhang, et al. 2015. Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science 46:86–110. doi:10.1016/j.progpolymsci.2015.02.001.
  • Kuo, S. M., Y. J. Wang, C. L. Weng, L. He, and S. J. Chang. 2005. Influence of alginate on type II collagen fibrillogenesis. Journal of Materials Science: Materials in Medicine 16:525–31. doi:10.1007/s10856-005-0528-x.
  • Li, G., S. Qin, D. Zhang, and X. Liu. 2019. Preparation of antibacterial degummed silk fiber/nano-hydroxyapatite/polylactic acid composite scaffold by degummed silk fiber loaded silver nanoparticles. Nanotechnology 30:295101. doi:10.1088/1361-6528/ab13df.
  • Lu, Y., Z. Hao, and C. Wan. 2019. Morphological and mechanical characterization of collagen-coated native silk fibroin fibers using chemical method. Materials Research Express 6:085410. doi:10.1088/2053-1591/ab2315.
  • Meng, C., W. Jiang, Z. Huang, T. Liu, and J. Feng. 2020. Fabrication of a highly conductive silk knitted composite scaffold by two-step electrostatic self-assembly for potential peripheral nerve regeneration. ACS Applied Materials &Interfaces. doi:10.1021/acsami.9b22088.
  • Mirmusavi, M. H., P. Zadehnajar, D. Semnani, S. Karbasi, F. Fekrat, and F. Heidari. 2019. Evaluation of physical, mechanical and biological properties of poly 3-hydroxybutyrate-chitosan-multiwalled carbon nanotube/silk nano-micro composite scaffold for cartilage tissue engineering applications. International Journal of Biological Macromolecules 132:822–35. doi:10.1016/j.ijbiomac.2019.03.227.
  • Mu, X., V. Fitzpatrick, and D. L. Kaplan. 2020. From silk spinning to 3D printing: Polymer manufacturing using directed hierarchical molecular assembly. Advanced Healthcare Materials e1901552. doi:10.1002/adhm.201901552.
  • Nair, A. K., A. Gautieri, S. W. Chang, and M. J. Buehler. 2013. Molecular mechanics of mineralized collagen fibrils in bone. Nature Communications 4:1724. doi:10.1038/ncomms2720.
  • Nalvuran, H., A. E. Elcin, and Y. M. Elcin. 2018. Nanofibrous silk fibroin/reduced graphene oxide scaffolds for tissue engineering and cell culture applications. International Journal of Biological Macromolecules 114:77–84. doi:10.1016/j.ijbiomac.2018.03.072.
  • Nova, A., S. Keten, N. M. Pugno, A. Redaelli, and M. J. Buehler. 2010. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Letters 10:2626–34. doi:10.1021/nl101341w.
  • Pan, H., Y. Zhang, H. Shao, X. Hu, X. Li, F. Tian, and J. Wang. 2014. Nanoconfined crystallites toughen artificial silk. Journal of Materials Chemistry B 2:1408–14. doi:10.1039/c3tb21148g.
  • Porter, D., and F. Vollrath. 2009. Silk as a biomimetic ideal for structural polymers. Advanced Materials 21:487–92. doi:10.1002/adma.200801332.
  • Reed, E. J., L. L. Bianchini, and C. Viney. 2012. Sample selection, preparation methods, and the apparent tensile properties of silkworm (B. mori) cocoon silk. Biopolymers 97:397–407. doi:10.1002/bip.22005.
  • Rockwood, D. N., R. C. Preda, T. Yucel, X. Wang, M. L. Lovett, and D. L. Kaplan. 2011. Materials fabrication from Bombyx mori silk fibroin. Nature Protocols 6:1612–31. doi:10.1038/nprot.2011.379.
  • Tansil, N. C., L. D. Koh, and M. Y. Han. 2012. Functional silk: Colored and luminescent. Advanced Materials 24:1388–97. doi:10.1002/adma.201104118.
  • Teramoto, H., and K. Kojima. 2014. Production of Bombyx mori silk fibroin incorporated with unnatural amino acids. Biomacromolecules 15:2682–90. doi:10.1021/bm5005349.
  • Teramoto, H., and K. Kojima. 2015. Incorporation of methionine analogues into bombyx mori silk fibroin for click modifications. Macromolecular Bioscience 15:719–27. doi:10.1002/mabi.201400482.
  • Tszydel, M., A. Zablotni, D. Wojciechowska, M. Michalak, I. Krucinska, K. Szustakiewicz, M. Maj, A. Jaruszewska, and J. Strzelecki. 2015. Research on possible medical use of silk produced by caddisfly larvae of Hydropsyche angustipennis (Trichoptera, Insecta). Journal of the Mechanical Behavior of Biomedical Materials 45:142–53. doi:10.1016/j.jmbbm.2015.02.003.
  • Vepari, C., and D. L. Kaplan. 2007. Silk as a biomaterial. Progress in Polymer Science 32:991–1007. doi:10.1016/j.progpolymsci.2007.05.013.
  • Wang, J. T., L. L. Li, L. Feng, J. F. Li, L. H. Jiang, and Q. Shen. 2014a. Directly obtaining pristine magnetic silk fibers from silkworm. International Journal of Biological Macromolecules 63:205–09. doi:10.1016/j.ijbiomac.2013.11.006.
  • Wang, J. T., L. L. Li, M. Y. Zhang, S. L. Liu, L. H. Jiang, and Q. Shen. 2014b. Directly obtaining high strength silk fiber from silkworm by feeding carbon nanotubes. Materials Science Engineering C-Materials for Biological Applications 34:417–21. doi:10.1016/j.msec.2013.09.041.
  • Wang, Q., C. Wang, M. Zhang, M. Jian, and Y. Zhang. 2016. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Letters 16:6695–700. doi:10.1021/acs.nanolett.6b03597.
  • Wang, Y., F. Wang, S. Xu, R. Wang, W. Chen, K. Hou, C. Tian, F. Wang, L. Yu, Z. Lu, et al. 2019. Genetically engineered bi-functional silk material with improved cell proliferation and anti-inflammatory activity for medical application. Acta Biomaterialia 86:148–57. doi:10.1016/j.actbio.2018.12.036.
  • Warnecke, D., S. Stein, M. Haffner-Luntzer, L. de Roy, N. Skaer, R. Walker, O. Kessler, A. Ignatius, and L. Duerselen. 2018. Biomechanical, structural and biological characterisation of a new silk fibroin scaffold for meniscal repair. Journal of the Mechanical Behavior of Biomedical Materials 86:314–24. doi:10.1016/j.jmbbm.2018.06.041.
  • Wu, G., P. Song, D. Zhang, Z. Liu, L. Li, H. Huang, H. Zhao, N. Wang, and Y. Zhu. 2017. Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles. International Journal of Biological Macromolecules 104:533–38. doi:10.1016/j.ijbiomac.2017.06.069.
  • Wu, J., J. Liu, Y. Shi, and Y. Wan. 2016. Rheological, mechanical and degradable properties of injectable chitosan/silk fibroin/hydroxyapatite/glycerophosphate hydrogels. Journal of the Mechanical Behavior of Biomedical Materials 64:161–72. doi:10.1016/j.jmbbm.2016.07.007.
  • Xu, S., J. Song, H. Morikawa, Y. Chen, and H. Lin. 2016. Fabrication of hierarchical structured Fe3O4 and Ag nanoparticles dual-coated silk fibers through electrostatic self-assembly. Materials Letters 164:274–77. doi:10.1016/j.matlet.2015.08.051.
  • Zhang, C., X. Liu, L. Xia, Y. Pi, X. Xiao, and W. Xu. 2018. Characterization of raw silk fibers obtained by feeding silkworms with protein powder. Journal of Natural Fibers 15:496–505. doi:10.1002/mabi.201400482.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.