202
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Preparation and Characterization of Graphene Oxide-based Natural Hybrids Containing Alfa Fibers or Microcrystalline Cellulose

ORCID Icon, ORCID Icon, , &

References

  • Arrakhiz, F., M. Elachaby, R. Bouhfid, S. Vaudreuil, M. Essassi, and A. Qaiss. 2012. Mechanical and thermal properties of polypropylene reinforced with alfa fiber under different chemical treatment. Materials & Design 35:318–22. doi:10.1016/j.matdes.2011.09.023.
  • Banerjee, P., A. Mukhopadhyay, and P. Das. 2019. Graphene oxide–nanobentonite composite sieves for enhanced desalination and dye removal. Desalination 451:231–40. doi:10.1016/j.desal.2017.06.010.
  • Benyahia, A., A. Merrouche, M. Rokbi, and Z. Kouadri. 2013. Study the effect of alkali treatment of natural fibers on the mechanical behavior of the composite unsaturated polyester-fiber alfa. Composites 2:3.
  • Benyahia, A., A. Merrouche, Z. E. A. Rahmouni, M. Rokbi, W. Serge, and Z. Kouadri. 2014. Study of the alkali treatment effect on the mechanical behavior of the composite unsaturated polyester-alfa fibers. Mechanics & Industry 15 (1):69–73. doi:10.1051/meca/2013082.
  • Beroual, M., D. Trache, O. Mehelli, L. Boumaza, A. F. Tarchoun, M. Derradji, and K. Khimeche. 2020. Effect of the delignification process on the physicochemical properties and thermal stability of microcrystalline cellulose extracted from date palm fronds. Waste and Biomass Valorization 1–15. doi:10.1007/s12649-020-01198-9.
  • Beroual, M., L. Boumaza, O. Mehelli, D. Trache, A. F. Tarchoun, and K. Khimeche. 2021. Physicochemical properties and thermal stability of microcrystalline cellulose isolated from esparto grass using different delignification approaches. Journal of Polymers and the Environment 29:130–142. doi:10.1007/s10924-020-01858-w.
  • Bessa, W., D. Trache, M. Derradji, and A. F. Tarchoun. 2020b. Non‐isothermal curing kinetics of alkali‐treated alfa fibers/polybenzoxazine composites using differential scanning calorimetry. Chemistry Select 5 (18):5374–86. doi:10.1002/slct.202000596.
  • Bessa, W., D. Trache, M. Derradji, H. Ambar, A. F. Tarchoun, M. Benziane, and B. Guedouar. 2020a. Characterization of raw and treated arundo donax l. Cellulosic fibers and their effect on the curing kinetics of bisphenol a-based benzoxazine. International Journal of Biological Macromolecules 164:2931–43. doi:10.1016/j.ijbiomac.2020.08.179.
  • Borchani, K. E., C. Carrot, and M. Jaziri. 2015. Untreated and alkali treated fibers from alfa stem: Effect of alkali treatment on structural, morphological and thermal features. Cellulose 22 (3):1577–89. doi:10.1007/s10570-015-0583-5.
  • Boudjellal, A., D. Trache, K. Khimeche, S. L. Hafsaoui, A. Bougamra, A. Tcharkhtchi, and J.-F. Durastanti. 2020. Stimulation and reinforcement of shape-memory polymers and their composites: A review. Journal of Thermoplastic Composite Materials 2020. doi:10.1177/0892705720930775.
  • Brahim, S. B., and R. B. Cheikh. 2007. Influence of fibre orientation and volume fraction on the tensile properties of unidirectional alfa-polyester composite. Composites Science and Technology 67 (1):140–47. doi:10.1016/j.compscitech.2005.10.006.
  • Bustos-Ramírez, K., A. L. Martínez-Hernández, G. Martínez-Barrera, M. D. Icaza, V. M. Castaño, and C. Velasco-Santos. 2013. Covalently bonded chitosan on graphene oxide via redox reaction. Materials 6 (3):911–26. doi:10.3390/ma6030911.
  • D’elia, E., H. S. Ahmed, E. Feilden, and E. Saiz. 2019. Electrically-responsive graphene-based shape-memory composites. Applied Materials Today 15:185–91. doi:10.1016/j.apmt.2018.12.018.
  • Dai, H., Y. Huang, and H. Huang. 2018. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydrate Polymers 185:1–11. doi:10.1016/j.carbpol.2017.12.073.
  • Dai, H., Y. Zhang, L. Ma, H. Zhang, and H. Huang. 2019. Synthesis and response of pineapple peel carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide)/graphene oxide hydrogels. Carbohydrate Polymers 215:366–76. doi:10.1016/j.carbpol.2019.03.090.
  • El Miri, N., M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy. 2016. Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of pva nanocomposites. Carbohydrate Polymers 137:239–48. doi:10.1016/j.carbpol.2015.10.072.
  • Geng, J., and H.-T. Jung. 2010. Porphyrin functionalized graphene sheets in aqueous suspensions: From the preparation of graphene sheets to highly conductive graphene films. The Journal of Physical Chemistry C 114 (18):8227–34. doi:10.1021/jp1008779.
  • Haafiz, M. M., S. Eichhorn, A. Hassan, and M. Jawaid. 2013. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydrate Polymers 93 (2):628–34. doi:10.1016/j.carbpol.2013.01.035.
  • Hanafi, S., D. Trache, W. He, W.-X. Xie, A. Mezroua, and Q.-L. Yan. 2020. Thermostable energetic coordination polymers based on functionalized go and their catalytic effects on the decomposition of ap and rdx. The Journal of Physical Chemistry C 124 (9):5182–95. doi:10.1021/acs.jpcc.9b11070.
  • Hoyos, C. G., E. Cristia, and A. Vázquez. 2013. Effect of cellulose microcrystalline particles on properties of cement based composites. Materials & Design 51:810–18. doi:10.1016/j.matdes.2013.04.060.
  • Hussain, S., A. Mohammad, and A. Khan. 2017. Zinc selective nano‐hybrid cation exchanger carboxymethyl cellulose zr (iv) tungstate: Sol‐gel synthesis, physicochemical characterization, and analytical applications. Polymer Composites 38 (10):2057–66. doi:10.1002/pc.23778.
  • Hussin, M. H., N. A. Pohan, Z. N. Garba, M. J. Kassim, A. A. Rahim, N. Brosse, M. Yemloul, M. N. Fazita, and M. M. Haafiz. 2016. Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents. International Journal of Biological Macromolecules 92:11–19. doi:10.1016/j.ijbiomac.2016.06.094.
  • Kafy, A., K. K. Sadasivuni, H.-C. Kim, A. Akther, and J. Kim. 2015. Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites. Physical Chemistry Chemical Physics 17 (8):5923–31. doi:10.1039/C4CP05921B.
  • Khan, A., A. A. Khan, A. M. Asiri, and K. A. Alamry. 2015a. Preparation and characterization of hybrid graphene oxide composite and its application in paracetamol microbiosensor. Polymer Composites 36 (2):221–28. doi:10.1002/pc.22933.
  • Khan, A., A. A. P. Khan, M. M. Rahman, A. M. Asiri, and K. A. Alamry. 2015b. Preparation of polyaniline grafted graphene oxide–wo 3 nanocomposite and its application as a chromium (iii) chemi-sensor. RSC Advances 5 (127):105169–78. doi:10.1039/C5RA17925D.
  • Khan, A., A. M. Asiri, M. Jawaid, and N. Saba. 2020. Effect of cellulose nano fibers and nano clays on the mechanical, morphological, thermal and dynamic mechanical performance of kenaf/epoxy composites. Carbohydrate Polymers 239:116248. doi:10.1016/j.carbpol.2020.116248.
  • Kim, C.-J., W. Khan, D.-H. Kim, K.-S. Cho, and S.-Y. Park. 2011. Graphene oxide/cellulose composite using nmmo monohydrate. Carbohydrate Polymers 86 (2):903–09. doi:10.1016/j.carbpol.2011.05.041.
  • Ku, H., H. Wang, N. Pattarachaiyakoop, and M. Trada. 2011. A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering 42 (4):856–73. doi:10.1016/j.compositesb.2011.01.010.
  • Kunusa, W. R., I. Isa, L. A. Laliyo, and H. Iyabu. 2018. Ftir, xrd and sem analysis of microcrystalline cellulose (mcc) fibers from corncorbs in alkaline treatment. In Journal of Physics: Conference Series, (pp. 012199). IOP Publishing. Makassar, Indonesia.
  • Labidi, K., O. Korhonen, M. Zrida, A. H. Hamzaoui, and T. Budtova. 2019. All-cellulose composites from alfa and wood fibers. Industrial Crops and Products 127:135–41. doi:10.1016/j.indcrop.2018.10.055.
  • Lu, H., Y. Yao, W. M. Huang, and D. Hui. 2014. Noncovalently functionalized carbon fiber by grafted self-assembled graphene oxide and the synergistic effect on polymeric shape memory nanocomposites. Composites Part B: Engineering 67:290–95.
  • Ma, R., S.-Y. Chou, Y. Xie, and Q. Pei. 2019. Morphological/nanostructural control toward intrinsically stretchable organic electronics. Chemical Society Reviews 48 (6):1741–86.
  • Ma, X., P. R. Chang, and J. Yu. 2008. Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers 72 (3):369–75. doi:10.1016/j.carbpol.2007.09.002.
  • Ouyang, W., J. Sun, J. Memon, C. Wang, J. Geng, and Y. Huang. 2013. Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors. Carbon 62:501–09. doi:10.1016/j.carbon.2013.06.049.
  • Paiva, M., I. Ammar, A. Campos, R. B. Cheikh, and A. Cunha. 2007. Alfa fibres: Mechanical, morphological and interfacial characterization. Composites Science and Technology 67 (6):1132–38. doi:10.1016/j.compscitech.2006.05.019.
  • Pandey, N., C. Tewari, S. Dhali, B. S. Bohra, S. Rana, S. Mehta, S. Singhal, A. Chaurasia, and N. G. Sahoo. 2019. Effect of graphene oxide on the mechanical and thermal properties of graphene oxide/hytrel nanocomposites. Journal of Thermoplastic Composite Materials 2019:1–13. doi:10.1177/0892705719838010.
  • Paredes, J., S. Villar-Rodil, A. MartiNez-Alonso, and J. Tascon. 2008. Graphene oxide dispersions in organic solvents. Langmuir 24 (19):10560–64. doi:10.1021/la801744a.
  • Puttegowda, M., S. M. Rangappa, A. Khan, S. A. Al‐Zahrani, A. Al Otaibi, P. Shivanna, M. M. Moure, and S. Siengchin. 2020. Preparation and characterization of new hybrid polymer composites from phoenix pusilla fibers/e‐glass/carbon fabrics on potential engineering applications: Effect of stacking sequence. Polymer Composites41:4572– 4582. doi:10.1002/pc.25734.
  • Saheb, D. N., and J. P. Jog. 1999. Natural fiber polymer composites: A review. Advances in Polymer Technology: Journal of the Polymer Processing Institute 18 (4):351–63. doi:10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X.
  • Sanchez-Garcia, M., E. Gimenez, and J. M. Lagarón. 2008. Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydrate Polymers 71 (2):235–44. doi:10.1016/j.carbpol.2007.05.041.
  • Sanjay, M., S. Siengchin, J. Parameswaranpillai, M. Jawaid, C. I. Pruncu, and A. Khan. 2019. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydrate Polymers 207:108–21. doi:10.1016/j.carbpol.2018.11.083.
  • Shang, Y., Z. Wang, X. Xu, C. Cheng, B. Gao, Q. Yue, S. Liu, and C. Han. 2019. Enhanced fluoride uptake by bimetallic hydroxides anchored in cotton cellulose/graphene oxide composites. Journal of Hazardous Materials 376:91–101. doi:10.1016/j.jhazmat.2019.05.039.
  • Stankovich, S., D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff. 2007. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45 (7):1558–65. doi:10.1016/j.carbon.2007.02.034.
  • Tarchoun, A. F., D. Trache, and T. M. Klapötke. 2019a. Microcrystalline cellulose from posidonia oceanica brown algae: Extraction and characterization. International Journal of Biological Macromolecules 138:837–45. doi:10.1016/j.ijbiomac.2019.07.176.
  • Tarchoun, A. F., D. Trache, T. M. Klapötke, M. Derradji, and W. Bessa. 2019b. Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose 26 (13–14):7635–51. doi:10.1007/s10570-019-02672-x.
  • Trache, D., A. Donnot, K. Khimeche, R. Benelmir, and N. Brosse. 2014. Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from alfa fibres. Carbohydrate Polymers 104:223–30. doi:10.1016/j.carbpol.2014.01.058.
  • Trache, D., M. H. Hussin, C. T. H. Chuin, S. Sabar, M. N. Fazita, O. F. Taiwo, T. Hassan, and M. M. Haafiz. 2016. Microcrystalline cellulose: Isolation, characterization and bio-composites application—a review. International Journal of Biological Macromolecules 93:789–804. doi:10.1016/j.ijbiomac.2016.09.056.
  • Trache, D., and V. K. Thakur. 2020. Nanocellulose and nanocarbons based hybrid materials: Synthesis, characterization and applications. Multidisciplinary Digital Publishing Institute. Nanomaterials 10(9):1800. doi:10.3390/nano10091800.
  • Trache, D., V. K. Thakur, and R. Boukherroub. 2020. Cellulose nanocrystals/graphene hybrids—a promising new class of materials for advanced applications. Nanomaterials 10 (8):1523. doi:10.3390/nano10081523.
  • Valentini, L., M. Cardinali, E. Fortunati, L. Torre, and J. M. Kenny. 2013. A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films. Materials Letters 105:4–7. doi:10.1016/j.matlet.2013.04.034.
  • Wang, B., W. Lou, X. Wang, and J. Hao. 2012. Relationship between dispersion state and reinforcement effect of graphene oxide in microcrystalline cellulose–graphene oxide composite films. Journal of Materials Chemistry 22 (25):12859–66. doi:10.1039/c2jm31635h.
  • Xu, K., B. Feng, C. Zhou, and A. Huang. 2016. Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination. Chemical Engineering Science 146:159–65. doi:10.1016/j.ces.2016.03.003.
  • Yadav, M., K. Rhee, I. Jung, and S. Park. 2013. Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20 (2):687–98. doi:10.1007/s10570-012-9855-5.
  • Yao, M., Z. Wang, Y. Liu, G. Yang, and J. Chen. 2019. Preparation of dialdehyde cellulose graftead graphene oxide composite and its adsorption behavior for heavy metals from aqueous solution. Carbohydrate Polymers 212:345–51. doi:10.1016/j.carbpol.2019.02.052.
  • Zaaba, N., K. Foo, U. Hashim, S. Tan, -W.-W. Liu, and C. Voon. 2017. Synthesis of graphene oxide using modified hummers method: Solvent influence. Procedia Engineering 184:469–77. doi:10.1016/j.proeng.2017.04.118.
  • Zaman, A., J. T. Orasugh, P. Banerjee, S. Dutta, M. S. Ali, D. Das, A. Bhattacharya, and D. Chattopadhyay. 2020. Facile one-pot in-situ synthesis of novel graphene oxide-cellulose nanocomposite for enhanced azo dye adsorption at optimized conditions. Carbohydrate Polymers 246:116661. doi:10.1016/j.carbpol.2020.116661.
  • Zhang, L., D. Ruan, and J. Zhou. 2001. Structure and properties of regenerated cellulose films prepared from cotton linters in naoh/urea aqueous solution. Industrial & Engineering Chemistry Research 40 (25):5923–28. doi:10.1021/ie0010417.
  • Zhu, Y., S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff. 2010. Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials 22 (35):3906–24. doi:10.1002/adma.201001068.
  • Zu, S.-Z., and B.-H. Han. 2009. Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: Formation of supramolecular hydrogel. The Journal of Physical Chemistry C 113 (31):13651–57. doi:10.1021/jp9035887.
  • Zulkifli, N. I., N. Samat, H. Anuar, and N. Zainuddin. 2015. Mechanical properties and failure modes of recycled polypropylene/microcrystalline cellulose composites. Materials & Design 69:114–23. doi:10.1016/j.matdes.2014.12.053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.