211
Views
13
CrossRef citations to date
0
Altmetric
Research Article

New Cellulosic Fibers from Washingtonia Tree Agro-wastes: Structural, Morphological, and Thermal Properties

ORCID Icon, , , , &

References

  • Alotabi, M. D., B. A. Alshammari, N. Saba, O. Y. Alothman, L. K. Kian, A. Khan, and M. Jawaid. 2020. Microcrystalline Cellulose from Fruit Bunch Stalk of Date Palm: Isolation and Characterization. Journal of Polymers and the Environment. doi:10.1007/s10924-020-01725-8.
  • Alotaibi, M. D., B. A. Alshammari, N. Saba, O. Y. Alothman, M. R. Sanjay, Z. Almutairi, and M. Jawaid. 2019. Characterization of natural fiber obtained from different parts of date palm tree (Phoenix dactylifera L.). International Journal of Biological Macromolecules 135:69–76. doi:10.1016/j.ijbiomac.2019.05.102.
  • Ayinla, R. T., J. O. Dennis, H. M. Zaid, Y. K. Sanusi, F. Usman, and L. L. Adebayo. 2019. A review of technical advances of recent palm bio-waste conversion to activated carbon for energy storage. Journal of Cleaner Production 229:1427–42. doi:10.1016/j.jclepro.2019.04.116.
  • Boumediri, H., A. Bezazi, G. G. Del Pino, A. Haddad, F. Scarpa, and A. Dufresne. 2019. Extraction and characterization of vascular bundle and fiber strand from date palm rachis as potential bio-reinforcement in composite. Carbohydrate Polymers 222:114997. doi:10.1016/j.carbpol.2019.114997.
  • Broschat, T. K. 2013. Washingtonia robusta: Mexican Fan Palm. EDIS 2013(10).
  • Cangelosi, B., F. Clematis, F. Monroy, P. F. Roversi, R. Troiano, P. Curir, and V. Lanzotti. 2015. Filiferol, a chalconoid analogue from Washingtonia filifera possibly involved in the defence against the Red Palm Weevil Rhynchophorus ferrugineus Olivier. Phytochemistry 115 (1):216–21. doi:10.1016/j.phytochem.2015.02.008.
  • Delzendehrooy, F., M. R. Ayatollahi, A. Akhavan-Safar, and L. F. M. da Silva. 2020. Strength improvement of adhesively bonded single lap joints with date palm fibers: Effect of type, size, treatment method and density of fibers. Composites Part B: Engineering 188:107874. doi:10.1016/j.compositesb.2020.107874.
  • Elseify, L. A., M. Midani, A. H. Hassanin, T. Hamouda, and R. Khiari. 2020. Long textile fibres from the midrib of date palm: Physiochemical, morphological, and mechanical properties. Industrial Crops & Products 151:112466. doi:10.1016/j.indcrop.2020.112466.
  • Espadin, A., L. T. D. Dios, E. Ruvalcaba, J. V. Garcia, C. Velasquillo, I. B. Jaimes, H. V. Torres, M. Gimeno, and K. Shirai. 2018. Production and characterization of a nanocomposite of highly crystalline nanowhiskers from biologically extracted chitin in enzymatic poly(ε-caprolactone). Carbohydrate Polymers 181:684–92. doi:10.1016/j.carbpol.2017.11.094.
  • Ferrer, A., C. Salas, and O. J. Rojas. 2016. Physical, thermal, chemical and rheological characterization of cellulosic microfibrils and microparticles produced from soybean hulls. Industrial Crops and Products 84:337–43. doi:10.1016/j.indcrop.2016.02.014.
  • Hafemann, E., R. Battisti, C. Marangoni, and R. A. F. Machado. 2019. Valorization of royal palm tree agroindustrial waste by isolating cellulose nanocrystals. Carbohydrate Polymers 218:188–98. doi:10.1016/j.carbpol.2019.04.086.
  • Hanieh, A. A., A. Hasan, and M. Assi. 2020. Date palm trees supply chain and sustainable model. Journal of Cleaner Production 258. doi:10.1016/j.jclepro.2020.120951.
  • Ho, R., D. D. S. Morais, C. J. F. Braz, K. Haag, R. M. R. Wellen, and E. L. Canedo. 2019. Impact of the natural filler babassu on the processing and properties of PBAT/PHB films. Composites Part A 124. doi:10.1016/j.compositesa.2019.105472.
  • Hosek, L., and A. Roloff. 2016. Urban forestry & urban greening species site matching: Selecting palms (Arecaceae) for urban growing spaces. Urban Forestry & Urban Greening 20:113–19. doi:10.1016/j.ufug.2016.08.006.
  • Hou, W., C. Ling, S. Shi, and Z. Yan. 2019. Preparation and characterization of microcrystalline cellulose from waste cotton fabrics by using phosphotungstic acid. International Journal of Biological Macromolecules 123:363–68. doi:10.1016/j.ijbiomac.2018.11.112.
  • Hussin, M. H., N. A. Pohan, Z. N. Garba, M. J. Kassim, A. A. Rahim, N. Brosse, and M. K. M. Haafiz. 2016. Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents. International Journal of Biological Macromolecules 92:11–19. doi:10.1016/j.ijbiomac.2016.06.094.
  • Khanjanzadeh, H., R. Behrooz, N. Bahramifar, S. Pinkl, and W. Gindl-Altmutter. 2019. Application of surface chemical functionalized cellulose nanocrystals to improve the performance of UF adhesives used in wood based composites - MDF type. Carbohydrate Polymers 206. doi:10.1016/j.carbpol.2018.10.115.
  • Kian, L. K., M. Jawaid, H. Ariffin, Z. Karim, and M. T. H. Sultan. 2019. Morphological, physico-chemical, and thermal properties of cellulose nanowhiskers from roselle fibers. Cellulose 26 (11):6599–613. doi:10.1007/s10570-019-02543-5.
  • Lamaming, J., R. Hashim, C. P. Leh, and O. Sulaiman. 2017. Properties of cellulose nanocrystals from oil palm trunk isolated by total chlorine free method. Carbohydrate Polymers 156:409–16. doi:10.1016/j.carbpol.2016.09.053.
  • Liu, Y., A. Liu, S. A. Ibrahim, H. Yang, and W. Huang. 2018. Isolation and characterization of microcrystalline cellulose from pomelo peel. International Journal of Biological Macromolecules 111:717–21. doi:10.1016/j.ijbiomac.2018.01.098.
  • Ma, Y., A. Teng, K. Zhao, K. Zhang, H. Zhao, S. Duan, and W. Wang. 2020. A top-down approach to improve collagen film’s performance: The comparisons of macro, micro and nano sized fibers. Food Chemistry 309:125624. doi:10.1016/j.foodchem.2019.125624.
  • Nehdi, I. A. 2011. Characteristics and composition of Washingtonia filifera (Linden ex André) H. Wendl. seed and seed oil. Food Chemistry 126 (1):197–202. doi:10.1016/j.foodchem.2010.10.099.
  • Nurazzi, N. M., A. Khalina, S. M. Sapuan, R. A. Ilyas, S. A. Rafiqah, and Z. M. Hanafee. 2019. Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester. Integrative Medicine Research 9 (2):1606–18. doi:10.1016/j.jmrt.2019.11.086.
  • Ouarhim, W., H. Essabir, M. Bensalah, N. Zari, and R. Bouhfid. 2018. Structural laminated hybrid composites based on raffia and glass fibers: Effect of alkali treatment, mechanical and thermal properties. Composites Part B. doi:10.1016/j.compositesb.2018.08.004.
  • Owolabi, A. F., M. K. M. Haafiz, M. S. Hossain, M. H. Hussin, and M. R. N. Fazita. 2017. Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds. International Journal of Biological Macromolecules 95:1228–34. doi:10.1016/j.ijbiomac.2016.11.016.
  • Pereira, H. P. F., N. F. Souza, H. Luiz, O. Jr, M. Rosa, and D. Freitas. 2020. Comparative analysis of different chlorine-free extraction on oil palm mesocarp fiber. Industrial Crops & Products 150. https://doi.org/10.1016/j.indcrop.2020.112305.
  • Pinheiro, A. P. P., and J. R. M. Almeida. 2020. Peach palm: Pseudo-wood for sustainable jewelry design. Materials Today: Proceedings. doi:10.1016/j.matpr.2020.05.228.
  • Ramachandran, V., F. Sya, M. Johari, and M. Mohd. 2020. Extraction and intensive conversion of lignocellulose from oil palm solid waste into lignin monomer by the combination of hydrothermal pretreatment and biological treatment. Bioresource Technology Reports 11. doi:10.1016/j.biteb.2020.100456.
  • Ravindran, L., M. S. Sreekala, and S. Thomas. 2019. International Journal of Biological Macromolecules Novel processing parameters for the extraction of cellulose nanofibres (CNF) from environmentally benign pineapple leaf fibres (PALF): Structure-property relationships. International Journal of Biological Macromolecules 131:858–870. doi:10.1016/j.ijbiomac.2019.03.134.
  • Shanmugasundaram, N., I. Rajendran, and T. Ramkumar. 2018. Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydrate Polymers 195:566–75. doi:10.1016/j.carbpol.2018.04.127.
  • Sonia, A., and K. Priya Dasan. 2013. Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydrate Polymers 92 (1):668–74. doi:10.1016/j.carbpol.2012.09.015.
  • Su, F., D. Liu, M. Li, Q. Li, C. Liu, L. Liu, and H. Qiao. 2020. Mesophase transition of cellulose nanocrystals aroused by the incorporation of two cellulose derivatives. Carbohydrate Polymers 233:115843. doi:10.1016/j.carbpol.2020.115843.
  • Tarchoun, A. F., D. Trache, T. M. Klapötke, M. Derradji, and W. Bessa. 2019. Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose 26 (13–14):7635–51. doi:10.1007/s10570-019-02672-x.
  • Trache, D., K. Khimeche, A. Mezroua, and M. Benziane. 2016. Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. Journal of Thermal Analysis and Calorimetry 124 (3):1485–96. doi:10.1007/s10973-016-5293-1.
  • Wang, L. F., S. Shankar, and J. W. Rhim. 2017. Properties of alginate-based films reinforced with cellulose fibers and cellulose nanowhiskers isolated from mulberry pulp. Food Hydrocolloids 63:201–08. doi:10.1016/j.foodhyd.2016.08.041.
  • Zhao, T., Z. Chen, X. Lin, Z. Ren, B. Li, and Y. Zhang. 2018. Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydrate Polymers 184:164–70. doi:10.1016/j.carbpol.2017.12.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.