1,121
Views
16
CrossRef citations to date
0
Altmetric
Review

Antimicrobial Activity of Natural Dyes – A Comprehensive Review

, &

References

  • Abdel-Kareem, O. 2010. Evaluating the combined efficacy of polymers with fungicides for protection of museum textiles against fungal deterioration in Egypt. Polish Journal of Microbiology 59 (4):271–80. doi:10.33073/pjm-2010-041.
  • Adeel, S., F. Rehman, S. Rafi, K. M. Zia, and M. Zuber. 2019. Environmentally friendly plant-based natural dyes: extraction methodology and applications. In Plant and Human Health, Springer, Cham. 2:383–15.
  • Akowuah, G. A., A. Mariam, and J. H. Chin. 2009. The effect of extraction temperature on total phenols and antioxidant activity of gynura procumbens leaf. Pharmacognosy Magazine 5 (17):81.
  • Ali, N. F., and E. L. Mohamedy. 2018. Antimicrobial activity of some natural dyes extract from different plants against some human pathogens. International Journal of Scientific Research and Management 8:4.
  • Alkan, R., E. Torgan, and R. Karadag. 2017. The investigation of antifungal activity and durability of natural silk fabrics dyed with madder and gallnut. Journal of Natural Fibers 14 (6):769–80. doi:10.1080/15440478.2017.1279101.
  • Ammayappan, L., and D. B. B. Shakyawar. 2016. Dyeing of carpet woolen yarn using natural dye from cochineal. Journal of Natural Fibers 13 (1):42–53. doi:10.1080/15440478.2014.984054.
  • Ammer, M. R., S. Zaman, M. Khalid, M. Bilal, S. Erum, D. Huang, and S. Che. 2016. Optimization of antibacterial activity of Eucalyptus tereticornis leaf extracts against Escherichia coli through response surface methodology. Journal of Radiation Research and Applied Sciences 9 (4):376–85. doi:10.1016/j.jrras.2016.05.001.
  • Arora, A., D. Gupta, D. Rastogi, and M. L. Gulrajani. 2012. Antimicrobial activity of naphthoquinones extracted from Arnebia nobilis. Journal of Natural Products 5:168–78.
  • Baliar, S., J. Jena, T. Das, and N. B. Das. 2013. Role of cationic and anionic surfactants in textile dyeing with natural dyes extracted from waste plant materials and their potential antimicrobial properties. Industrial Crops and Products 50:618–24. doi:10.1016/j.indcrop.2013.08.037.
  • Basak, S., and S. W. Ali. 2017. Leveraging flame retardant efficacy of pomegranate rind extract, a novel biomolecule, on ligno-cellulosic materials. Polymer Degradation and Stability 144:83–92. doi:10.1016/j.polymdegradstab.2017.07.025.
  • Basri, D. F., L. S. Tan, Z. Shafiei, and N. M. Zin. 2012. Vitro antibacterial activity of galls of quercus infectoria olivier against oral pathogens. Evidence-Based Complementary and Alternative Medicine 2012:1–6. doi:10.1155/2012/632796.
  • Boruah, G., A. R. Phukan, B. B. Kalita, P. Pandit, and S. Jose. 2019. Dyeing of mulberry silk using binary combination of henna leaves and monkey jack bark. Journal of Natural Fibers 1:9.
  • Buzzini, P., P. Arapitsas, M. Goretti, E. Branda, B. Turchetti, P. Pinelli, F. Ieri, and A. Romani. 2008. Antimicrobial and antiviral activity of hydrolysable tannins. Mini-Reviews in Medicinal Chemistry 8 (12):1179. doi:10.2174/138955708786140990.
  • Cardamone, J. M. 2001. Biodeterioration of wool by microorganisms and insects. Bioactive Fibers and Polymer 5:263–98.
  • Cerempei, A., E. I. Mureşan, N. Cimpoeşu, C. Carp-Cărare, and C. Rimbu. 2016. Dyeing and antibacterial properties of aqueous extracts from quince (Cydonia oblonga) leaves. Industrial Crops and Products 94:216–25. doi:10.1016/j.indcrop.2016.08.018.
  • Chandarana, H., S. Baluja, and S. Chanda. 2005. Comparison of antibacterial activities of selected species of Zingiberaceae family and some synthetic compounds. Turkish Journal of Biology 29 (2):83–97.
  • Chusri, S., W. Jittanon, S. Limsuwan, and K. Maneenoon. 2013. P15 Anti-biofilm efficacy of traditional Thai natural recipes used for wound treatment. International Journal of Antimicrobial Agents 42:45–46. doi:10.1016/S0924-8579(13)70260-7.
  • Costa, D. A., M. H. Chaves, W. C. S. Silva, and C. L. S. Cost. 2010. Constituintes químicos, fenóis totais e atividade antioxidante de Sterculia striata St. Hil. et Naudin. Acta Amazonica 40 (1):207–12. doi:10.1590/S0044-59672010000100026.
  • Dahiya, P., and S. Purkayastha. 2012. Phytochemical screening and antimicrobial activity of some medicinal plants against multi-drug resistant bacteria from clinical isolates. Indian Journal of Pharmaceutical Sciences 74 (5):443. doi:10.4103/0250-474X.108420.
  • Das, P. K., and A. K. Mondal. 2012. Studies on traditional ‘mehendi’ used as natural colour with special references to its antimicrobial activity and pigment profile by TLC. International Journal of Science and Nature 3 (4):799–804.
  • Dos, S., P. Muniz, T. R. Fiaschitello, R. S. Queiroz, H. S. Freeman, S. A. Costa, P. Leo, A. F. Montemor, and S. M. Costa. 2020. Natural dye from Croton urucurana Baill. bark: Extraction, physicochemical characterization, textile dyeing and color fastness properties. Dyes and Pigments 173:107953. doi:10.1016/j.dyepig.2019.107953.
  • Elshemy, N. S. 2011. Unconventional natural dyeing using microwave heating with cochineal as natural dyes. Research Journal of Textile and Apparel 15 (4):26–6. doi:10.1108/RJTA-15-04-2011-B004.
  • Fijan, S., D. Pahor, and S. T. Sostar. 2017. Survival of E faecium, Staphylococcus aureus and Pseudomonas aeruginosa on cotton. Textile Research Journal 87 (14):1711–21. doi:10.1177/0040517516658514.
  • Forlani, G., A. M. Seves, and O. Ciferri. 2000. A bacterial extracellular proteinase degrading silk fibroin. International Biodeterioration & Biodegradation 46 (4):271–75. doi:10.1016/S0964-8305(00)00099-8.
  • Gawish, S., H. Mashaly, H. Helmy, A. Ramadan, and R. Farouk. 2017. Effect of mordant on UV protection and antimicrobial activity of cotton, wool, silk and nylon fabrics dyed with some natural dyes. Journal of Nanomedicine & Nanotechnology 8:2.
  • Gazala, Q., I. Murtaza, S. Ara, H. Qazi, S. M. Geelani, and S. Amir. 2016. Characterization and antimicrobial activity of some natural dye yielding plant species of Kashmir Valley. Journal of Industrial Pollution Control 32:2.
  • Ghaheh, F. S., A. S. Nateri, S. M. Mortazavi, D. Abedi, and J. Mokhtari. 2012. The effect of mordant salts on antibacterial activity of wool fabric dyed with pomegranate and walnut shell extracts. Coloration Technology 128 (6):473–78. doi:10.1111/j.1478-4408.2012.00402.x.
  • Godstime, O. C., O. E. Felix, O. Jewo Augustina, and O. Eze Christopher. 2014. Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens–a review. Journal of Pharmaceutical, Chemical and Biological Sciences 2 (2):77–85.
  • Górniak, I., R. Bartoszewski, and J. Króliczewski. 2019. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews 18 (1):241–72.
  • Gupta, A., S. Mahajan, and R. Sharma. 2015. Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aureus. Biotechnology Reports 6:51–55. doi:10.1016/j.btre.2015.02.001.
  • Gurrapu, S., and E. Mamidala. 2017. In vitro antibacterial activity of alkaloids isolated from leaves of Eclipta alba against human pathogenic bacteria. Pharmacognosy Journal 9 (4):4. doi:10.5530/pj.2017.4.91.
  • Habbal, O. A., A. Al-Jabri, A. H. El-Hag, Z. H. Al-Mahrooqi, and N. A. Al-Hashmi. 2005. In-vitro antimicrobial activity of Lawsonia inermis Linn (henna). A pilot study on the Omani henna. Saudi Medical Journal 26 (1):69–72.
  • Haji, A. 2013. Eco-friendly dyeing and antibacterial treatment of cotton. Cellulose Chemistry and Technology 47 (3–4):303–08.
  • Hoffer, D. 2006. Antimicrobial textiles, skin-borne flora and odour. Current Problems in Dermatology33:67–77. doi:10.1159/000093937.
  • Ibrahim, N. A., A. R. El-Gamal, M. Gouda, and F. Mahrous. 2010. A new approach for natural dyeing and functional finishing of cotton cellulose. Carbohydrate Polymers 82 (4):1205–11. doi:10.1016/j.carbpol.2010.06.054.
  • Jabli, M., N. Sebeia, M. Boulares, and K. Faidi. 2017. Chemical analysis of the characteristics of Tunisian Juglans regia L. fractions: Antibacterial potential, gas chromatography–mass spectroscopy and a full investigation of their dyeing properties. Industrial Crops and Products 108:690–99. doi:10.1016/j.indcrop.2017.07.032.
  • Jain, P., S. Nimbrana, and G. Kalia. 2010. Antimicrobial activity and phytochemical analysis of Eucalyptus tereticornis bark and leaf methanolic extracts. International Journal of Pharmaceutical Sciences Review and Research 4 (2):126–28.
  • Jang, H. J., and J. S. Jung. 2016. Study of UV protection, deodorization and antimicrobial properties of cotton fabrics dyed with the liquids extracted from Salvia Plebia R. Br. Fashion and Textile Research Journal 18 (3):380–86. doi:10.5805/SFTI.2016.18.3.380.
  • Jose, S., P. Pandit, and R. Pandey. 2019. Chickpea husk – A potential agro-waste for coloration and functional finishing of textiles. Industrial Crops and Products 142:111833. doi:10.1016/j.indcrop.2019.111833.
  • Kamboj, A. 2017. Development of silk kurtis with natural dyes with tie and dye techniques. Punjab Agricultural University: M.Sc Thesis.
  • Kannahi, M., and K. Vinotha. 2013. Antimicrobial activity of Lawsonia inermis leaf extracts against some human pathogens. International Journal of Current Microbiology and Applied Sciences 2 (5):342–49.
  • Khameneh, B., M. Iranshahy, V. Soheili, and B. S. F. Bazzaz. 2019. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrobial Resistance and Infection Control 8 (1):118.
  • Khan, S. A., A. Ahmad, M. I. Khan, M. Yusuf, M. Shahid, N. Manzoor, and F. Mohammad. 2012. Antimicrobial activity of wool yarn dyed with Rheum emodi L. (Indian Rhubarb). Dyes and Pigments 95 (2):206–14. doi:10.1016/j.dyepig.2012.04.010.
  • Maciel, V. B. V., C. M. P. Yoshida, and T. T. Franco. 2015. Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohydrate Polymers 132:537–45. doi:10.1016/j.carbpol.2015.06.047.
  • Mirjalili, M., and L. Karimi. 2013. Antibacterial dyeing of polyamide using turmeric as a natural dye. Autex Research Journal 13 (2):51–56. doi:10.2478/v10304-012-0023-7.
  • Negi, B. S., and B. P. Dave. 2010. In vitro antimicrobial activity of Acacia catechu and its phytochemical analysis. Indian Journal of Microbiology 50 (4):369–74. doi:10.1007/s12088-011-0061-1.
  • Pal, A., R. Kumar, and Y. C. Tripathi. 2016. Antifungal activity of natural colorant from melia composita bark and its application in functional textile finishing. International Journal of Pharmacy and Pharmaceutical Sciences 8 (5):387–91.
  • Pal, A., R. Kumar, L. Upadhyay, and Y. C. Tripathi. 2018. Antifungal activity of natural dye from aerial biomass of Barleria Prionitis L. and dyed fabrics. Iranian Journal of Chemistry and Chemical Engineering 37 (1):213–21.
  • Pandey, R., S. Patel, P. Pandit, S. Nachimuthu, and S. Jose. 2018. Colouration of textiles using roasted peanut skin-an agro processing residue. Journal of Cleaner Production 172:1319–26. doi:10.1016/j.jclepro.2017.10.268.
  • Pannu, S. 2013. Investigation of natural variants for antimicrobial finishes in innerwear – A review paper for promotion of natural hygiene in innerwear. International Journal of Engineering Trends and Technology 4 (5):2168–71.
  • Pargai, D., S. Jahan, and M. Gahlot. 2020. Functional Properties of Natural Dyed Textiles. In Chemistry and Technology of Natural and Synthetic Dyes and Pigments. IntechOpen. doi:10.5772/intechopen.88933.
  • Patel, B., and P. Kanade. 2019. Sustainable dyeing and printing with natural colours vis-à-vis preparation of hygienic viscose rayon fabric. Sustainable Materials and Technologies 22:e00116. doi:10.1016/j.susmat.2019.e00116.
  • Pizzi, A. 2008. Tannins-major sources, properties and applications. Gandini MNB, editor. Monomers, Polymers and Composites from Renewable Resources, edited by M. N. B. Gandini, 179–99. Amsterdam: Elsevier. doi:10.1016/B978-0-08-045316-3.00008-9.
  • Prusty, A. K., T. Das, A. Nayak, and N. B. Das. 2010. Colourimetric analysis and antimicrobial study of natural dyes and dyed silk. Journal of Cleaner Production 18 (16–17):1750–56. doi:10.1016/j.jclepro.2010.06.020.
  • Rahardiyan, D. 2019. Antibacterial potential of catechin of tea (Camellia sinensis) and its applications. Food Research 3 (1):1–6. doi:10.26656/fr.2017.3(1).097.
  • Rajendran, R., C. Balakumar, J. Kalaivani, and R. Sivakumar. 2011. Dyeability and antimicrobial properties of cotton fabrics finished with punica granatum extracts. Journal of Textile and Apparel Technology and Management 7:2.
  • Ramya, K., and V. Maheshwari. 2013. Analysis of the antimicrobial efficacy of bamboo/cotton knitted fabric finished with the extracts of the Syzygium aromaticum buds. Textile Science and Engineering 3 (3):1–5.
  • Rather, L. J., M. Azam, M. Shabbir, M. N. Bukhari, M. Shahid, M. A. Khan, Q. M. R. Haque, and F. Mohammad. 2016. Antimicrobial and fluorescence finishing of woolen yarn with Terminalia arjuna natural dye as an ecofriendly substitute to synthetic antibacterial agents. RSC Advances 6 (45):39080–94. doi:10.1039/C6RA02717B.
  • Salem, N., K. Msaada, S. Kahoui, G. Mangano, S. Azaiz, I. Slimen, S. Kefi, G. Pintore, F. Limam, and M. Marzouk. 2014. Evaluation of antibacterial, antifungal and antioxidant of safflower natural dyes during flowering. Bio Med Research International 2:1–14.
  • Samant, L., S. Jose, N. M. Rose, and D. B. Shakyawar. 2020. Antimicrobial and UV protection properties of cotton fabric using enzymatic pretreatment and dyeing with Acacia catechu. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2020.1807443.
  • Şapcı, H., F. Yılmaz, C. Vural, M. İ. Bahtiyari, and H. Benli. 2017. Antimicrobial and antifungal activity of fabrics dyed with viburnum opulus and onion skins. International Journal of Secondary Metabolite 4 (1):280–84. doi:10.21448/ijsm.372225.
  • Sarkar, A. K., and R. Dhandapani. 2009. Study of natural colorants as antibacterial agents on natural fibers. Journal of Natural Fibers 6 (1):46–55. doi:10.1080/15440470802704370.
  • Seventekin, N., and O. Ucarci. 1993. The damage caused by micro-organisms to cotton fabrics. Journal of the Textile Institute 84 (3):304–13.
  • Shahid, M., A. Ahmad, M. Yusuf, M. I. Khan, S. A. Khan, N. Manzoor, and F. Mohammad. 2012. Dyeing, fastness and antimicrobial properties of woolen yarns dyed with gallnut (Quercus infectoria Oliv.) extract. Dyes and Pigments 95 (1):53–61. doi:10.1016/j.dyepig.2012.03.029.
  • Singh, A., and S. Jahan. 2019. Extraction of natural dyes from Glycyrrhiza glabra and Lagerstoermia speciosa for wool dyeing and testing of its functional properties. International Journal of Current Microbiology and Applied Sciences 8 (12):2119–29. doi:10.20546/ijcmas.2019.812.251.
  • Singh, A. R., and K. Kalirajan. 2012. Anti-microbial activity of turmeric natural dye against different bacterial strains. Journal of Applied Pharmaceutical Science 2 (6):21.
  • Soulef, K., and A. Yahia. 2017. Anti-bacterial effects of glycosides extract of glycyrrhiza glabraL. From the region of djamâa (south-east of algeria). Journal of Medicinal Herbs and Ethnomedicine 3:22–25.
  • Sun, X., T. Zhou, C. Wei, W. Lan, Y. Zhao, Y. Pan, and V. C. H. Wu. 2018. Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various food borne pathogens. Food Control 94:155–61. doi:10.1016/j.foodcont.2018.07.012.
  • Taguri, T., T. Tanaka, and I. Kouno. 2006. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biological & Pharmaceutical Bulletin 29 (11):2226–35. doi:10.1248/bpb.29.2226.
  • Teli, M. D., and P. Pandit. 2017. Multifunctionalised silk using Delonix regia stem shell waste. Fibers and Polymers 18 (9):1679–90. doi:10.1007/s12221-017-1228-0.
  • Uzkul, H., and R. Alkan. 2018. Antimicrobial properties of silk fabrics dyed with green walnut shell (Juglans regia L.). Kocaeli Journal of Science and Engineering 1 (2):28–32. doi:10.34088/kojose.410163.
  • Velmurugan, P., J. Kim, K. Kim, J. Park, K. Lee, W. Chang, Y. Park, M. Cho, and B. Oh. 2017. Extraction of natural colorant from purple sweet potato and dyeing of fabrics with silver nanoparticles for augmented antibacterial activity against skin pathogens. Journal of Photochemistry and Photobiology B: Biology 173:571–79. doi:10.1016/j.jphotobiol.2017.07.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.