830
Views
41
CrossRef citations to date
0
Altmetric
Review

Lignocellulosic Fiber Cement Compatibility: A State of the Art Review

ORCID Icon, &

References

  • Aggarwal, L. 1992. Studies on cement-bonded coir fibre boards. Cement and Concrete Composites 14 (1):63–69. doi:10.1016/0958-9465(92)90040-3.
  • Aggarwal, L., S. Agrawal, P. Thapliyal, and S. Karade. 2008. Cement-bonded composite boards with arhar stalks. Cement and Concrete Composites 30:44–51. doi:10.1016/j.cemconcomp.2007.07.004.
  • Akinyemi, B. A., and C. Dai. 2020. Development of banana fibers and wood bottom ash modified cement mortars. Construction and Building Materials 241:118041. doi:10.1016/j.conbuildmat.2020.118041.
  • Alam, M., M. Maniruzzaman, and M. Morshed. 2014. Application and advances in microprocessing of natural fiber (jute)–based composites. Amsterdam, Netherland: Elsevier.
  • Aleem, S. A. E., M. Heikal, and W. Morsi. 2014. Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica. Construction and Building Materials 59:151–60. doi:10.1016/j.conbuildmat.2014.02.039.
  • Al-Mohamadawi, A., K. Benhabib, R.-M. Dheilly, and A. Goullieux. 2016. Influence of lignocellulosic aggregate coating with paraffin wax on flax shive and cement-shive composite properties. Construction and Building Materials 102:94–104. doi:10.1016/j.conbuildmat.2015.10.190.
  • Alpar, T., A. Pavlekovics, L. Csoka, and L. Horvath. 2009.  Production of cement-bonded particleboards from poplar (Populus euramericana cv. „I 214“). Drvna Industrija 60 (3):155–60.
  • Alpár, T. 1994. Porosity tesing of cement-bonded particleboards hardened by carbon dyoxide injection. Hungary: University of Forestry and Wood Sciences Sopron.
  • Alpar, T. L., and É. S. Levente Csoka. (2012). “Advanced wood cement compatibility with nano mineral”, International Scientific Conference on Sustainable Development & Ecological Footprint, Sopron, Hungary.
  • Amiandamhen, S., M. Meincken, and L. Tyhoda. 2016. Magnesium based phosphate cement binder for composite panels: A response surface methodology for optimisation of processing variables in boards produced from agricultural and wood processing industrial residues. Ind. Crops. Prod 94:746–54. doi:10.1016/j.indcrop.2016.09.051.
  • Anju, T., K. Ramamurthy, and R. Dhamodharan. 2016. Surface modified microcrystalline cellulose from cotton as a potential mineral admixture in cement mortar composite. Cement and Concrete Composites 74:147–53. doi:10.1016/j.cemconcomp.2016.09.003.
  • Antwi-Boasiako, C., L. Ofosuhene, and K. B. Boadu. 2018. Suitability of sawdust from three tropical timbers for wood-cement composites. Journal of Sustainable Forestry 37 (4):414–28. doi:10.1080/10549811.2018.1427112.
  • Ashori, A., T. Tabarsa, and S. Sepahvand. 2012. Cement-bonded composite boards made from poplar strands. Construction and Building Materials 26 (1):131–34. doi:10.1016/j.conbuildmat.2011.06.001.
  • Assaedi, H., F. Shaikh, and I. M. Low. 2016. Characterizations of flax fabric reinforced nanoclay-geopolymer composites. Composites Part B: Engineering 95:412–22. doi:10.1016/j.compositesb.2016.04.007.
  • Ayrilmis, N., S. K. Hosseinihashemi, M. Karimi, A. Kargarfard, and H. S. Ashtiani. 2017. Technological properties of cement-bonded composite board produced with the main veins of oil palm (elaeis guineensis) particles. BioResources 12 (2):3583–600. doi:10.15376/biores.12.2.3583-3600.
  • Baishya, P., and T. K. Maji. 2016. Functionalization of MWCNT and their application in properties development of green wood nanocomposite. Carbohydrate Polymers 149:332–39. doi:10.1016/j.carbpol.2016.04.117.
  • Balázs, G. 1987. Energy efficient concrete curing, 14–20. Hungary: Technical Publishing, Budapest.
  • Balea, A., C. Negro, C. Negro, and C. Negro. 2019a. Nanocelluloses: Natural-based materials for fiber-reinforced cement composites. a critical review. Polymers 11 (3):518. doi:10.3390/polym11030518.
  • Balea, A., C. Negro, C. Negro, and C. Negro. 2019b. Nanocelluloses: Natural-based materials for fiber-reinforced cement composites. a critical review. Polymers 11 (3):518. doi:10.3390/polym11030518.
  • Bentchikou, M., A. Guidoum, K. Scrivener, K. Silhadi, and S. Hanini. 2012. Effect of recycled cellulose fibres on the properties of lightweight cement composite matrix. Construction and Building Materials 34:451–56. doi:10.1016/j.conbuildmat.2012.02.097.
  • Bhosale, A., N. P. Zade, P. Sarkar, and R. Davis. 2020. Mechanical and physical properties of cellular lightweight concrete block masonry. Construction and Building Materials 248:118621. doi:10.1016/j.conbuildmat.2020.118621.
  • Boadu, K. B., C. Antwi-Boasiako, and L. Ofosuhene. 2018. Solvent extraction of inhibitory substances from three hardwoods of different densities and their compatibility with cement in composite production. Journal of the Indian Academy of Wood Science 15 (2):140–48. doi:10.1007/s13196-018-0219-0.
  • Brandt, A. M. 2008. Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite Structures 86 (1–3):3–9. doi:10.1016/j.compstruct.2008.03.006.
  • Brzyski, P., D. Barnat-Hunek, S. FIC, and M. Szeląg. 2017. Hydrophobization of lime composites with lignocellulosic raw materials from flax. Journal of Natural Fibers 14 (5):609–20. doi:10.1080/15440478.2016.1250024.
  • Cabral, M. R., E. Y. Nakanishi, V. Dos Santos, J. H. Palacios, S. Godbout, H. Savastano, and J. Fiorelli. 2018. Evaluation of pre-treatment efficiency on sugarcane bagasse fibers for the production of cement composites. Archives of Civil and Mechanical Engineering 18 (4):1092–102. doi:10.1016/j.acme.2018.02.012.
  • Castro, V. G., R. D. R. Azambuja, N. F. Bila, C. F. A. Parchen, G. I. Sassaki, and S. Iwakiri. 2018. Correlation between chemical composition of tropical hardwoods and wood–cement compatibility. Journal of Wood Chemistry and Technology 38 (1):28–34. doi:10.1080/02773813.2017.1355390.
  • Cavdar, A. D., H. Yel, S. Boran, and E. Pesman. 2017. Cement type composite panels manufactured using paper mill sludge as filler. Construction and Building Materials 142:410–16. doi:10.1016/j.jcou.2017.01.018.
  • Claramunt, J., H. Ventura, R. D. Toledo Filho, and M. Ardanuy. 2019. Effect of nanocelluloses on the microstructure and mechanical performance of CAC cementitious matrices. Cement and Concrete Research 119:64–76. doi:10.1016/j.cemconres.2019.02.006.
  • Correa, J. P., J. M. Montalvo-Navarrete, and M. A. Hidalgo-Salazar. 2019. Carbon footprint considerations for biocomposite materials for sustainable products: A review. Journal of Cleaner Production 208:785–94. doi:10.1016/j.jclepro.2018.10.099.
  • Coutinho, A. 1997. Manufacture and properties of concrete. Vol. I. LNEC—National Laboratory of Civil Engineering, Lisbon (In Portuguese). Lisbon, Portugal.
  • Coutts, R. 1983. Flax fibres as a reinforcement in cement mortars. International Journal of Cement Composites and Lightweight Concrete 5 (4):257–62. doi:10.1016/0262-5075(83)90067-2.
  • Coutts, R. S. 2005. A review of Australian research into natural fibre cement composites. Cement and Concrete Composites 27 (5):518–26. doi:10.1016/j.cemconcomp.2004.09.003.
  • Da Silva, E. J., M. L. Marques, F. G. Velasco, C. F. Junior, F. M. Luzardo, and M. M. Tashima. 2017. A new treatment for coconut fibers to improve the properties of cement-based composites–combined effect of natural latex/pozzolanic materials. Sustainable Materials and Technologies 12:44–51. doi:10.1016/j.susmat.2017.04.003.
  • de Almeida Melo Filho, J., F. de Andrade Silva, and R. D. Toledo Filho. 2013. Degradation kinetics and aging mechanisms on sisal fiber cement composite systems. Cement and Concrete Composites 40:30–39. doi:10.1016/j.cemconcomp.2013.04.003.
  • de Mello Innocentini, M. D., M. A. V. de Faria, M. R. Crespi, and V. H. B. Andrade. 2019. Air permeability assessment of corrugated fiber-cement roofing sheets. Cement and Concrete Composites 97:259–67. doi:10.1016/j.cemconcomp.2019.01.004.
  • Delannoy, G., S. Marceau, P. Gle, E. Gourlay, M. Guéguen-Minerbe, D. Diafi, S. Amziane, and F. Farcas. 2020. Impact of hemp shiv extractives on hydration of Portland cement. Construction and Building Materials 244:118300. doi:10.1016/j.conbuildmat.2020.118300.
  • Ede, A. N., O. M. Olofinnade, O. Joshua, D. O. Nduka, O. A. Oshogbunu, and G. Brando. 2020. Influence of bamboo fiber and limestone powder on the properties of self-compacting concrete. Cogent Engineering 7 (1):1721410. doi:10.1080/23311916.2020.1721410.
  • Fadhel, A., and A. Sabrine. 2018. Preparation and evaluation of the influence of modified fiber flour wood on the properties of the fresh condition of cement-based mortars. International Journal of Industrial Chemistry 9 (3):265–76. doi:10.1007/s40090-018-0155-2.
  • Fan, M., M. K. Ndikontar, X. Zhou, and J. N. Ngamveng. 2012. Cement-bonded composites made from tropical woods: Compatibility of wood and cement. Construction and Building Materials 36:135–40. doi:10.1016/j.conbuildmat.2012.04.089.
  • Faruk, O., A. K. Bledzki, H.-P. Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 37 (11):1552–96. doi:10.1016/j.progpolymsci.2012.04.003.
  • Ferrandez-García, M. T., C. E. Ferrandez-Garcia, T. Garcia-Ortuño, A. Ferrandez-Garcia, and M. Ferrandez-Villena. 2020. Study of waste jute fibre panels (corchorus capsularis L.) agglomerated with Portland cement and starch. Polymers 12 (3):599. doi:10.3390/polym12030599.
  • Ferreira, D. P., J. Cruz, and R. Fangueiro. 2019. Surface modification of natural fibers in polymer composites. In Green composites for automotive applications, edited by G. Koronis, and A. Silva, 3–41. Amsterdam, Netherland: Elsevier.
  • Fonseca, C. S., M. F. Silva, R. F. Mendes, P. R. G. Hein, A. L. Zangiacomo, H. Savastano Jr, and G. H. D. Tonoli. 2019. Jute fibers and micro/nanofibrils as reinforcement in extruded fiber-cement composites. Construction and Building Materials 211:517–27. doi:10.1016/j.conbuildmat.2019.03.236.
  • Frazão, C., J. Barros, R. Toledo Filho, S. Ferreira, and D. Gonçalves. 2018. Development of sandwich panels combining sisal fiber-cement composites and fiber-reinforced lightweight concrete. Cement and Concrete Composites 86:206–23. doi:10.1016/j.cemconcomp.2017.11.008.
  • Frybort, S., R. Mauritz, A. Teischinger, and U. Müller. 2008. Cement bonded composites–A mechanical review. BioResources 3 (2):602–26.
  • Fuwape, J. A., and A. O. Oyagade. 1993. Bending strength and dimensional stability of tropical wood-cement particleboard. Bioresource Technology 44 (1):77–79. doi:10.1016/0960-8524(93)90212-T.
  • Gábor MARKÓ, G. K., O. T. T. Ágota, L. KOROKNAIa, and T. L. ALPÁR. (March 12-16, 2012). “Development of wood plastic composite with optimized inertia”, International Scientific Conference on Sustainable Development & Ecological Footprint, Sopron, Hungary:1–7.
  • Ghaffar, S. H., M. Al-Kheetan, P. Ewens, T. Wang, and J. Zhuang. 2020. Investigation of the interfacial bonding between flax/wool twine and various cementitious matrices in mortar composites. Construction and Building Materials 239:117833. doi:10.1016/j.conbuildmat.2019.117833.
  • Girones, J., L. T. Vo, J.-M. Haudin, L. Freire, and P. Navard. 2017. Crystallization of polypropylene in the presence of biomass-based fillers of different compositions. Polymer 127:220–31. doi:10.1016/j.polymer.2017.09.006.
  • Gomes, C. M., A.-L. Garry, E. Freitas, C. Bertoldo, and G. Siqueira. 2020. Effects of rice husk silica on microstructure and mechanical properties of Magnesium-oxychloride Fiber Cement (MOFC). Construction and Building Materials 241:118022. doi:10.1016/j.conbuildmat.2020.118022.
  • Govin, A., A. Peschard, E. Fredon, and R. Guyonnet. 2005. New insights into wood and cement interaction. Holzforschung 59 (3):330–35. doi:10.1515/HF.2005.054.
  • Gupta, A. 2020. Effect of industrial waste on chemical and water absorption of bamboo fiber reinforced composites. Silicon 12 (1):139–46. doi:10.1007/s12633-019-00108-6.
  • Gupta, S., H. W. Kua, and H. J. Koh. 2018. Application of biochar from food and wood waste as green admixture for cement mortar. Science of the Total Environment 619:419–35. doi:10.1016/j.scitotenv.2017.11.044.
  • Hachmi, M., A. Moslemi, and A. Campbell. 1990. A new technique to classify the compatibility of wood with cement. Wood Science and Technology 24 (4):345–54. doi:10.1007/BF00227055.
  • Hakamy, A., F. Shaikh, and I. M. Low. 2014. Characteristics of hemp fabric reinforced nanoclay–cement nanocomposites. Cement and Concrete Composites 50:27–35. doi:10.1016/j.cemconcomp.2014.03.002.
  • Hardie, J. 7thMarch 2020. Fibre Cement. https://www.jameshardie.com.au/fibre-cement/
  • Hasan, K. M. F., H. Péter György, and A. Tibor. 2020d. Thermo-mechanical behavior of MDI bonded flax/glass woven fabric reinforced laminated composites. ACS Omega. https://ddoi.org/10.1021/acsomega.0c04798
  • Hasan, K. M. F., P. G. Horváth, G. Markó, and T. Alpar. 2020c. Thermo-mechanical characteristics of flax woven fabric reinforced PLA and PP biocomposites. Green Mater. doi:10.1680/jgrma.20.00052.
  • Hasan, K. M. F., P. G. Horváth, and T. Alpár. 2020b. Potential natural fiber polymeric nanobiocomposites: A review. Polymers 12 (5):1072. doi:10.3390/polym12051072.
  • Hernández-Olivares, F., R. E. Medina-Alvarado, X. E. Burneo-Valdivieso, and A. R. Zúñiga-Suárez. 2020. Short sugarcane bagasse fibers cementitious composites for building construction. Construction and Building Materials 247:118451. doi:10.1016/j.conbuildmat.2020.118451.
  • Hervy, M., S. Evangelisti, P. Lettieri, and K.-Y. Lee. 2015. Life cycle assessment of nanocellulose-reinforced advanced fibre composites. Composites Science and Technology 118:154–62. doi:10.1016/j.compscitech.2015.08.024.
  • Hewlett, P., and M. Liska. 2019. Lea’s chemistry of cement and concrete. The Boulevard, Oxford: Butterworth-Heinemann.
  • Hisseine, O. A., W. Wilson, L. Sorelli, B. Tolnai, and A. Tagnit-Hamou. 2019. Nanocellulose for improved concrete performance: A macro-to-micro investigation for disclosing the effects of cellulose filaments on strength of cement systems. Construction and Building Materials 206:84–96. doi:10.1016/j.conbuildmat.2019.02.042.
  • Hou, P.-K., S. Kawashima, K.-J. Wang, D. J. Corr, J.-S. Qian, and S. P. Shah. 2013. Effects of colloidal nanosilica on rheological and mechanical properties of fly ash–cement mortar. Cement and Concrete Composites 35 (1):12–22. doi:10.1016/j.cemconcomp.2012.08.027.
  • Ibeto, C., C. Obiefuna, and K. Ugwu. 2020. Environmental effects of concretes produced from partial replacement of cement and sand with coal ash. International Journal of Environmental Science and Technology 1–10. doi:10.1007/s13762-020-02682-4.
  • Indiamart. 2020. Shera cement fiber rectangular board, width: 6 inch. (March7th). https://www.indiamart.com/proddetail/shera-board-19648729091.html
  • Ipeaiyeda, A., G. Obaje, and A. Rein. 2017. Impact of cement effluent on water quality of rivers: A case study of Onyi river at Obajana, Nigeria. Cogent Environmental Science 3 (1):1319102. doi:10.1080/23311843.2017.1319102.
  • Joy, J., C. Jose, X. Yu, L. Mathew, S. Thomas, and S. Pilla. 2017. The influence of nanocellulosic fiber, extracted from helicteres isora, on thermal, wetting and viscoelastic properties of poly (butylene succinate) composites. Cellulose 24 (10):4313–23. doi:10.1007/s10570-017-1439-y.
  • Karade, S. 2010. Cement-bonded composites from lignocellulosic wastes. Construction and Building Materials 24 (8):1323–30. doi:10.1016/j.conbuildmat.2010.02.003.
  • Kariyawasam, K., and C. Jayasinghe. 2016. Cement stabilized rammed earth as a sustainable construction material. Construction and Building Materials 105:519–27. doi:10.1016/j.conbuildmat.2015.12.189.
  • Karthi, N., K. Kumaresan, S. Sathish, S. Gokulkumar, L. Prabhu, and N. Vigneshkumar. 2020. An overview: Natural fiber reinforced hybrid composites, chemical treatments and application areas. Materials Today: Proceedings. doi:10.1016/j.matpr.2020.01.011.
  • Katare, V. D., M. V. Madurwar, and S. Raut. 2020. Agro-industrial waste as a cementitious binder for sustainable concrete: An overview. In Sustainable Waste Management: Policies and Case Studies, edited by S. K. Ghosh, 683–702. Singapore: Springer.
  • Khelifi, H., T. Lecompte, A. Perrot, and G. Ausias. 2016. Mechanical enhancement of cement-stabilized soil by flax fibre reinforcement and extrusion processing. Materials and Structures 49 (4):1143–56. doi:10.1617/s11527-015-0564-z.
  • Kochova, K., V. Caprai, F. Gauvin, K. Schollbach, and H. Brouwers. 2020. Investigation of local degradation in wood stands and its effect on cement wood composites. Construction and Building Materials 231:117201. doi:10.1016/j.conbuildmat.2019.117201.
  • Lakeside. 2020. James hardie fiber cement vs LP smartside siding. (March7th). https://lakesiderenovationanddesign.com/james-hardie-fiber-cement-vs-lp-smartside-siding
  • Li, G., Y. Yu, Z. Zhao, J. Li, and C. Li. 2003. Properties study of cotton stalk fiber/gypsum composite. Cement and Concrete Research 33 (1):43–46. doi:10.1016/S0008-8846(02)00915-8.
  • Li, M., M. Khelifa, A. Khennane, and M. El Ganaoui. 2019. Structural response of cement-bonded wood composite panels as permanent formwork. Composite Structures 209:13–22. doi:10.1016/j.compstruct.2018.10.079.
  • Li, M., Y. Pu, V. M. Thomas, C. G. Yoo, S. Ozcan, Y. Deng, K. Nelson, and A. J. Ragauskas. 2020. Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B: Engineering:108254 200:108254. doi:10.1016/j.compositesb.2020.108254.
  • Liang, J., L. Zhimeng, Y. Ye, W. Yanjun, L. Jingxin, and Z. Changlin. 2018. Fabrication and characterization of fatty acid/wood-flour composites as novel form-stable phase change materials for thermal energy storage. Energy and Buildings 171:88–99. doi:10.1016/j.enbuild.2018.04.044.
  • Lieber, W. 1972. Einfluss von Triäthanolamin, Zucker und Borsäure auf das Erstarren und Erhärten von Zementen. Zement-Kalk-Gips
  • Lonrace. 7thMarch 2020. fiber cement board. https://www.lonrace.com/fiber-cement-board-pd088204.html
  • Luhar, S., T.-W. Cheng, and I. Luhar. 2019. Incorporation of natural waste from agricultural and aquacultural farming as supplementary materials with green concrete: A review. Composites Part B: Engineering:107076 175:107076. doi:10.1016/j.compositesb.2019.107076.
  • Lum, W. C., S. H. Lee, Z. Ahmad, J. A. Halip, and K. L. Chin. 2019. Lignocellulosic nanomaterials for construction and building applications. In Industrial Applications of Nanomaterials, edited by S. Thomas, Y. Grohens, and Y. B. Pottathara, 423–39. Amsterdam, Netherland: Elsevier.
  • M Rowell, R. 2014. Acetylation of wood–a review. International Journal of Lignocellulosic Products 1 (1):1–27. doi:10.22069/ijlp.2014.1920.
  • Makul, N. 2020. Modern sustainable cement and concrete composites: Review of current status, challenges and guidelines. Sustainable Materials and Technologies 25:e00155. doi:10.1016/j.susmat.2020.e00155.
  • Mármol, G., and J. H. Savastano. 2017. Study of the degradation of non-conventional MgO-SiO2 cement reinforced with lignocellulosic fibers. Cement and Concrete Composites 80:258–67. doi:10.1016/j.cemconcomp.2017.03.015.
  • Mastali, M., P. Kinnunen, A. Dalvand, R. M. Firouz, and M. Illikainen. 2018. Drying shrinkage in alkali-activated binders–a critical review. Construction and Building Materials 190:533–50. doi:10.1016/j.conbuildmat.2018.09.125.
  • Materials, M. 7thMarch 2020. CERACLAD faux wood fiber cement façades. https://modern-materials.com/ceraclad-faux-wood-fiber-cement-facades/
  • Mendes, R. F., A. P. Vilela, C. L. Farrapo, J. F. Mendes, G. H. D. Tonoli, and L. M. Mendes. 2017. Lignocellulosic residues in cement-bonded panels. In Sustainable and nonconventional construction materials using inorganic bonded fiber composites, 3–16. Duxford,United Kingdom: Elsevier.
  • Mendoza, R. C., J. O. Grande, and M. N. Acda. 2019. Effect of keratin fibers on setting and hydration characteristics of Portland cement. Journal of Natural Fibers 1–8. doi:10.1080/15440478.2019.1701604.
  • Miller, D., and A. Moslemi. 2007. Wood-cement composites: Effect of model compounds on hydration characteristics and tensile strength. Wood and Fiber Science 23 (4):472–82.
  • Mohammadkazemi, F., R. Aguiar, and N. Cordeiro. 2017. Improvement of bagasse fiber–cement composites by addition of bacterial nanocellulose: An inverse gas chromatography study. Cellulose 24 (4):1803–14. doi:10.1007/s10570-017-1210-4.
  • Momoh, E. O., and A. I. Osofero. 2018. Recent developments in the application of oil palm fibers in cement composites. Frontiers of Structural and Civil Engineering 1–15. doi:10.1007/s11709-019-0576-9.
  • Moslemi, A., and M. P. Hamel. 1989. Wood–cement chemical relationships, fiber and particleboards bonded with inorganic binders. Madison, United States: Forest Products Research Society.
  • Na, B., Z. Wang, H. Wang, and X. Lu. 2014. Wood-cement compatibility review. Wood Research 59 (5):813–26.
  • Ogunjobi, K., M. Ajibade, O. Gakenou, and S. Gbande. 2019. Physical and mechanical properties of cement-bonded particle board produced from anogeissus leiocarpus (DC.) guill and perr wood species. African Journal of Agriculture Technology and Environment Vol 8 (1):192–99.
  • Okorder.com. 2020. Fiber cement composite panel. (July7th). https://www.okorder.com/p/fiber-cement-composite-panel_566623.html#
  • Oliveira, C. A., J. V. Silva, N. A. Bianchi, C. I. Campos, K. A. Oliveira, D. S. Galdino, M. S. Bertolini, C. A. Morais, A. J. de Souza, and J. C. Molina. 2020. Influence of Indian cedar particle pretreatments on cement-wood composite properties. BioResources 15 (1):1656–64. doi:10.15376/biores.15.1.1656-1664.
  • Onuaguluchi, O., and N. Banthia. 2016. Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites 68:96–108. doi:10.1016/j.cemconcomp.2016.02.014.
  • Oorkalan, A., and S. Chithra. 2020. Effect of coconut coir pith as partial substitute for river sand in eco-friendly concrete. Materials Today: Proceedings 21:488–91. doi:10.1016/j.matpr.2019.06.639.
  • Pacheco-Torgal, F., and S. Jalali. 2011. Cementitious building materials reinforced with vegetable fibres: A review. Construction and Building Materials 25 (2):575–81. doi:10.1016/j.conbuildmat.2010.07.024.
  • Pavlíková, M., L. Zemanová, J. Pokorný, M. Záleská, O. Jankovský, M. Lojka, and Z. Pavlík. 2019. Influence of wood-based biomass ash admixing on the structural, mechanical, hygric, and thermal properties of air lime mortars. Materials 12 (14):2227. doi:10.3390/ma12142227.
  • Pehanich, J. L., P. R. Blankenhorn, and M. R. Silsbee. 2004. Wood fiber surface treatment level effects on selected mechanical properties of wood fiber–cement composites. Cement and Concrete Research 34 (1):59–65. doi:10.1016/S0008-8846(03)00193-5.
  • Pérez-Fonseca, A., J. Robledo-Ortíz, F. Moscoso-Sánchez, F. Fuentes-Talavera, D. Rodrigue, and R. González-Núñez. 2015. Self-hybridization and coupling agent effect on the properties of natural fiber/HDPE composites. Journal of Polymers and the Environment 23 (1):126–36. doi:10.1007/s10924-014-0706-3.
  • Phoo-ngernkham, T., P. Chindaprasirt, V. Sata, S. Hanjitsuwan, and S. Hatanaka. 2014. The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Materials & Design 55:58–65. doi:10.1016/j.matdes.2013.09.049.
  • Qin, L., X. Gao, and T. Chen. 2018. Recycling of raw rice husk to manufacture magnesium oxysulfate cement based lightweight building materials. Journal of Cleaner Production 191:220–32. doi:10.1016/j.jclepro.2018.04.238.
  • Quiroga, A., V. Marzocchi, and I. Rintoul. 2016. Influence of wood treatments on mechanical properties of wood–cement composites and of populus Euroamericana wood fibers. Composites Part B: Engineering 84:25–32. doi:10.1016/j.compositesb.2015.08.069.
  • Rojas, D. F. H., P. Pineda-Gómez, and J. F. Guapacha. 2020. Effect of silica nanoparticles on the mechanical and physical properties of fibercement boards. Journal of Building Engineering:101332. doi:10.1016/j.jobe.2020.101332.
  • Roofing Superstore, R. 7thMarch 2020. Eternit profile 3” fibre cement sheet natural grey. https://www.roofingsuperstore.co.uk/product/eternit-profile-3-34-fibre-cement-sheet-natural-grey.html
  • Rowell, R. M. 2005. chemical modification of woods. In Handbook of wood chemistry and wood composites, ed. R. M. Rowell, 380–413. FL, USA: CRC Press, Taylor and Francis, Boca Ratan.
  • Rowell, R. M. 2012. Handbook of wood chemistry and wood composites. Boca Raton, United States: CRC press.
  • Ruano, G., F. Bellomo, G. López, A. Bertuzzi, L. Nallim, and S. Oller. 2020. Mechanical behaviour of cementitious composites reinforced with bagasse and hemp fibers. Construction and Building Materials 240:117856. doi:10.1016/j.conbuildmat.2019.117856.
  • Saba, N., M. Jawaid, M. Paridah, and O. Al‐Othman. 2016. A review on flammability of epoxy polymer, cellulosic and non‐cellulosic fiber reinforced epoxy composites. Polymers for Advanced Technologies 27 (5):577–90. doi:10.1002/pat.3739.
  • Saint-Gobain, G. 7thMarch 2020. AQUAROC® FC BOARD. https://www.gyproc.ae/products/gyproc-plasterboards/aquarocr-fc-board
  • Savastano Jr, H., P. G. Warden, and R. S. Coutts. 2003. Potential of alternative fibre cements as building materials for developing areas. Cement and Concrete Composites 25 (6):585–92. doi:10.1016/S0958-9465(02)00071-9.
  • Schubert, B., and O. Wienhaus. 1984. Die Messung des Temperaturverlaufes der Zementhydratation als Prüfmethode für die Herstellung von Holz-zement-Werkstoffen. Holztechnologie 25 (3):118–22.
  • Shawia, N. B., M. A. Jabber, and A. F. Mamouri. 2014. Mechanical and physical properties of natural fiber cement board for building partitions. Physical Sciences Research International 2 (3):49–53. doi:10.13140/RG.2.2.21670.37442.
  • Sheridan, J., M. Sonebi, S. Taylor, and S. Amziane. 2020. The effect of a polyacrylic acid viscosity modifying agent on the mechanical, thermal and transport properties of hemp and rapeseed straw concrete. Construction and Building Materials 235:117536. doi:10.1016/j.conbuildmat.2019.117536.
  • Siding Authority. 2020. Fiber cement siding: Pros, cons, and best brands. https://sidingauthority.com/fiber-cement-siding/
  • Singh, H., G. Brar, and G. Mudahar. 2017. Evaluation of characteristics of fly ash-reinforced clay bricks as building material. Journal of Building Physics 40 (6):530–43. doi:10.1177/2F1744259116659662.
  • Singh, V., K. Sandeep, H. Kushwaha, S. Powar, and R. Vaish. 2018. Photocatalytic, hydrophobic and antimicrobial characteristics of ZnO nano needle embedded cement composites. Construction and Building Materials 158:285–94. doi:10.1016/j.conbuildmat.2017.10.035.
  • Sood, M., and G. Dwivedi. 2018. Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egyptian Journal of Petroleum 27 (4):775–83. doi:10.1016/j.ejpe.2017.11.005.
  • Soroushian, P., R. A. Arola, and Z. Shah. 1992. Recycling of wood and paper in cementitious materials. MRS Online Proceedings Library Archive 266. doi:10.1557/PROC-266-165.
  • Suazo, F. J. A., J. D. C. Carregosa, R. M. P. B. Oliveira, and W. Acchar. 2020. Mechanical performance and healing process improvement of cement-coir pith particle composites by accelerated carbonation. Matéria (Rio De Janeiro) 25 (2):2. doi:10.1590/s1517-707620200002.1069.
  • Tan, J., W. Lu, Y. Huang, S. Wei, X. Xuan, L. Liu, and G. Zheng. 2019. Preliminary study on compatibility of metakaolin-based geopolymer paste with plant fibers. Construction and Building Materials 225:772–75. doi:10.1016/j.conbuildmat.2019.07.142.
  • Tang, P., L. Mo, C. Pan, H. Fang, B. Javilla, and M. Riara. 2018. Investigation of rheological properties of light colored synthetic asphalt binders containing different polymer modifiers. Construction and Building Materials 161:175–85. doi:10.1016/j.conbuildmat.2017.11.098.
  • Teixeira, J. N., D. W. Silva, A. P. Vilela, H. S. Junior, L. E. V. de Siqueira Brandão, and R. F. Mendes. 2018. Lignocellulosic materials for fiber cement production. Waste and Biomass Valorization 1–8. doi:10.1007/s12649-018-0536-y.
  • Tibor, L., M. S. ALPARa, I. HAJDU, and L. BEJÓ. (2012). “Developing building materials from cement-bonded reed composite based on waste materials”, International Scientific Conference on Sustainable Development & Ecological Footprint, Sopron, Hungary:1–7.
  • Usman, M., A. Y. Khan, S. H. Farooq, A. Hanif, S. Tang, R. A. Khushnood, and S. A. Rizwan. 2018. Eco-friendly self-compacting cement pastes incorporating wood waste as cement replacement: A feasibility study. Journal of Cleaner Production 190:679–88. doi:10.1016/j.jclepro.2018.04.186.
  • Vaickelionis, G., and R. Vaickelioniene. 2006. Cement hydration in the presence of wood extractives and pozzolan mineral additives. Ceramics Silikaty 50 (2):115.
  • Venkatasudhahar, M., P. Kishorekumar, and N. Dilip Raja. 2020. Influence of stacking sequence and fiber treatment on mechanical properties of carbon-jute-banana reinforced epoxy hybrid composites. International Journal of Polymer Analysis and Characterization 25 (4):238–51. doi:10.1080/1023666X.2020.1781481.
  • Wagh, A. S. 2013. Recent progress in chemically bonded phosphate ceramics. ISRN Ceramics 2013. doi:10.1155/2013/983731.
  • Wagh, A. S. 2016. Chemically bonded phosphate ceramics: Twenty-first century materials with diverse applications. Amsterdam, Netherland: Elsevier.
  • Wang, H., Q.-H. Qin, and Y. Xiao. 2016a. Special n-sided voronoi fiber/matrix elements for clustering thermal effect in natural-hemp-fiber-filled cement composites. International Journal of Heat and Mass Transfer 92:228–35. doi:10.1016/j.ijheatmasstransfer.2015.08.093.
  • Wang, L., and D. C. Tsang. 2018. Carbon dioxide sequestration on composites based on waste wood. In Carbon Dioxide Sequestration in Cementitious Construction Materials, 431–50. Amsterdam, Netherland: Elsevier.
  • Wang, L., K. Iris, D. C. Tsang, K. Yu, S. Li, C. S. Poon, and J.-G. Dai. 2018. Upcycling wood waste into fibre-reinforced magnesium phosphate cement particleboards. Construction and Building Materials 159:54–63. doi:10.1016/j.conbuildmat.2017.10.107.
  • Wang, L., L. Chen, J. L. Provis, D. C. Tsang, and C. S. Poon. 2020. Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas. Cement and Concrete Composites 106:103489. doi:10.1016/j.cemconcomp.2019.103489.
  • Wang, L., S. S. Chen, D. C. Tsang, C. S. Poon, and K. Shih. 2016c. Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. Construction and Building Materials 125:316–25. doi:10.1016/j.conbuildmat.2016.08.053.
  • Wang, L., S. S. Chen, D. C. Tsang, C.-S. Poon, and J.-G. Dai. 2017. CO2 curing and fibre reinforcement for green recycling of contaminated wood into high-performance cement-bonded particleboards. Journal of CO2 Utilization 18:107–16. doi:10.1016/j.jcou.2017.01.018.
  • Wang, L., S. S. Chen, D. C. Tsang, C.-S. Poon, and K. Shih. 2016b. Recycling contaminated wood into eco-friendly particleboard using green cement and carbon dioxide curing. Journal of Cleaner Production 137:861–70. doi:10.1016/j.jclepro.2016.07.180.
  • Wayfair. 7thMarch 2020. Pettitt 3-piece fiber cement pot planter set. https://www.wayfair.com/outdoor/pdx/latitude-run-pettitt-3-piece-fiber-cement-pot-planter-set-lttn1307.html
  • Winandy, J. E. 2017. Relating wood chemistry and strength: Part II. fundamental relationships between changes in wood chemistry and strength of wood. Wood and Fiber Science 49 (1):2–11.
  • Winandy, J. E., and P. K. Lebow. 2007. Modeling strength loss in wood by chemical composition. Part I. An individual component model for southern pine. Wood and Fiber Science 33 (2):239–54.
  • Winandy, J. E., and R. M. Rowell. 2005. 11 chemistry of wood strength. Handbook of Wood Chemistry and Wood Composites, 303–47.  Boca Raton, United States: CRC Press.
  • Wu, Y., L. Cai, C. Mei, S. S. Lam, C. Sonne, S. Q. Shi, and C. Xia. 2020. Development and evaluation of zinc oxide-blended kenaf fiber biocomposite for automotive applications. Materials Today Communications:101008 24:101008. doi:10.1016/j.mtcomm.2020.101008.
  • Xiao, J., Y. Zuo, P. Li, J. Wang, and Y. Wu. 2018. Preparation and characterization of straw/magnesium cement composites with high-strength and fire-retardant. Journal of Adhesion Science and Technology 32 (13):1437–51. doi:10.1080/01694243.2017.1422626.
  • Ye, H., Y. Zhang, and Z. Yu. 2018. Wood flour’s effect on the properties of geopolymer-based composites at different curing times. BioResources 13 (2):2499–514. doi:10.15376/biores.13.2.2499-2514.
  • Yoo, D.-Y., S. Kim, and M.-J. Kim. 2018. Comparative shrinkage behavior of ultra-high-performance fiber-reinforced concrete under ambient and heat curing conditions. Construction and Building Materials 162:406–19. doi:10.1016/j.conbuildmat.2017.12.029.
  • Yu, J., M. Zhang, G. Li, J. Meng, and C. K. Leung. 2020. Using nano-silica to improve mechanical and fracture properties of fiber-reinforced high-volume fly ash cement mortar. Construction and Building Materials 239:117853. doi:10.1016/j.conbuildmat.2019.117853.
  • Yu, T., Y. Ren, Z. Guo, X. Chen, J. Chen, and E. M. A. Elbashiry. 2018. Progress of research into cotton straw and corn straw cement-based building materials in China. Advances in Cement Research 30 (3):93–102. doi:10.1680/jadcr.17.00040.
  • Zhang, J., H. Wang, R. Ou, and Q. Wang. 2018. The properties of flax fiber reinforced wood flour/high density polyethylene composites. Journal of Forestry Research 29 (2):533–40. doi:10.1007/s11676-017-0461-0.
  • Zhang, L., A. Gustavsen, B. P. Jelle, L. Yang, T. Gao, and Y. Wang. 2017. Thermal conductivity of cement stabilized earth blocks. Construction and Building Materials 151:504–11. doi:10.1016/j.conbuildmat.2017.06.047.
  • Zhou, B., L. Wang, G. Ma, X. Zhao, and X. Zhao. 2020. Preparation and properties of bio-geopolymer composites with waste cotton stalk materials. Journal of Cleaner Production 245:118842. doi:10.1016/j.jclepro.2019.118842.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.