385
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Isolation and Characterization of Cellulose Nanofibrils from Banana Pseudostem, Oil Palm Trunk, and Kenaf Bast Fibers Using Chemicals and High-intensity Ultrasonication

ORCID Icon, , , & ORCID Icon

References

  • Abe, K., S. Iwamoto, and H. Yano. 2007. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–78. doi:10.1021/bm700624p.
  • Abraham, E., B. Deepa, L. A. Pothan, M. Jacob, S. Thomas, U. Cvelbar, and R. Anandjiwala. 2011. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydrate Polymers 86:1468–75. doi:10.1016/j.carbpol.2011.06.034.
  • Alemdar, A., Sain, M., 2008. Isolation and characterization of nanofibers from agri-cultural residues: wheat straw and soy hulls. Bioresour. Technol. 99, 1664 –1671
  • Ayan, C., S. Mohini, and K. Mark. 2005. Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–07. doi:10.1515/HF.2005.016.
  • Bakri, M. K. B., and E. Jayamani. 2016. Comparative study of functional groups in natural fibers: Fourier transform infrared analysis (FTIR). Futuristic Trends in Engineering, Science, Humanities, and Technology 16:167–74.
  • Chandra, J., N. George, and S. K. Narayanankutty. 2016. Isolation and characterization of cellulose nanofibrils from areca nut husk fibre. Carbohydrate Polymers 142:158–66. doi:10.1016/j.carbpol.2016.01.015.
  • Chieng, B. W., S. H. Lee, N. A. Ibrahim, Y. Y. Then, and Y. Y. Loo. 2017. Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber. Polymers 9:1–11. doi:10.3390/polym9080355.
  • Deepa, B., E. Abraham, N. Cordeiro, M. Mozetic, A. P. Mathew, K. Oksman, M. Faria, S. Thomas, and L. A. Pothan. 2015. Utilization of various lignocellulosic biomass for the production of nanocellulose: A comparative study. Cellulose 22:1075–90. doi:10.1007/s10570-015-0554-x.
  • Desmaisons, J., E. Boutonnet, M. Rueff, A. Dufresne, and J. Bras. 2017. A new quality index for benchmarking of different cellulose nanofibrils. Carbohydrate Polymers 174:318–29. doi:10.1016/j.carbpol.2017.06.032.
  • Espinosa, E., R. Sánchez, Z. González, J. Domínguez-Robles, B. Ferrari, and A. Rodríguez. 2017. Rapidly growing vegetables as new sources for lignocellulose nanofibre isolation: Physicochemical, thermal and rheological characterization. Carbohydrate Polymers 175:27–37. doi:10.1016/j.carbpol.2017.07.055.
  • Fahma, F., Iwamoto, S., Hori, N., Iwata, T. and Takemura, A. (2010). Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB), Cellulose, 17:977–985
  • Feng, Y. H., T. Y. Cheng, W. G. Yang, P. T. Ma, H. Z. He, X. C. Yin, and X. X. Yu. 2018. Characteristics and environmentally friendly extraction of cellulose nanofibrils from sugarcane bagasse. Industrial Crops and Products 111:285–91. doi:10.1016/j.indcrop.2017.10.041.
  • Fillat, Ú., B. Wicklein, R. Martín-Sampedro, D. Ibarra, E. Ruiz-Hitzky, C. Valencia, A. Sarrión, E. Castro, and M. E. Eugenio. 2018. Assessing cellulose nanofiber production from olive tree pruning residue. Carbohydrate Polymers 179:252–61. doi:10.1016/j.carbpol.2017.09.072.
  • Hongxiang, X., D. Haishun, Y. Xianghao, and S. Chuanling. 2018. Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. International Journal of Polymer Science 2018:1–25.
  • Iwamoto, S., A. N. Nakagaito, H. Yano, and M. Nogi. 2005. Optically transparent composites reinforced with plant fibre-based nanofibers. Applied Physics A 81:1109–12. doi:10.1007/s00339-005-3316-z.
  • Janardhnan, S., and M. M. Sain. 2011. Targeted disruption of hydroxyl chemistry and crystallinity in natural fibres for the isolation of cellulose nano-fibers via enzymatic treatment. BioResources 6:1242–50.
  • Jiang, F., and Y. L. Hsieh. 2013. Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydrate Polymers 95:32–40. doi:10.1016/j.carbpol.2013.02.022.
  • Jonoobi, M., R. Oladi, Y. Davoudpour, K. Oksman, A. Dufresne, Y. Hamzeh, and R. Davoodi. 2015. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review. Cellulose 22:935–69. doi:10.1007/s10570-015-0551-0.
  • Joonobi, M., J. Harun, P. M. Tahir, L. H. Zaini, S. SaifulAzry, and M. D. Makinejad. 2010. Characteristic of nanofibers extracted from kenaf core. BioResources 5:2556–66.
  • Kargarzadeh, H., M. Ioelovich, I. Ahmad, S. Thomas, and A. Dufresne. 2017. Methods for extraction of nanocellulose from various sources. In In Handbook of nanocellulose and cellulose nanocomposites, ed. H. Kargarzadeh, I. Ahmad, S. Thomas, and A. Dufresne., Vol. 1, 1–49. Weinheim: Wiley-VCH.
  • Kargarzadeh, H., I. Ahmad, I. Abdullah, A. Dufresne, S. Y. Zainudin, and R. M. Sheltami. 2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–66. doi:10.1007/s10570-012-9684-6.
  • Karimi, S., P. M. Tahir, A. Karimi, A. Dufresne, and A. Abdulkhani. 2014. Kenaf bast cellulosic fibers hierarchy: A comprehensive approach from micro to nano. Carbohydrate Polymers 101:878–85. doi:10.1016/j.carbpol.2013.09.106.
  • Kawee, N., N. T. Lam, and P. Sukyai. 2018. Homogenous isolation of individualized bacterial nanofibrillated cellulose by high pressure homogenization. Carbohydrate Polymers 179:394–401. doi:10.1016/j.carbpol.2017.09.101.
  • Khawas, P., and S. C. Deka. 2016. Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydrate Polymers 137:608–16. doi:10.1016/j.carbpol.2015.11.020.
  • Kim, D. Y., B. M. Lee, D. H. Koo, P. H. Kang, and J. P. Jeun. 2016. Preparation of nanocellulose from a kenaf core using E-beam irradiation and acid hydrolysis. Cellulose 23:3039–49. doi:10.1007/s10570-016-1037-4.
  • Lani, N. S., N. Ngadi, A. Johari, and M. Jusoh. 2014. Isolation, characterization, and application of nanocellulose from oil palm empty fruit bunch fiber as nanocomposites. Journal of Nanomaterials 2014:1–9. doi:10.1155/2014/702538.
  • Li, M. C., Q. Wu, K. Song, S. Lee, Y. Qing, and Y. Wu. 2015. Cellulose nanoparticles: Structure–morphology–rheology relationships. ACS Sustainable Chemistry & Engineering 3:821–32. doi:10.1021/acssuschemeng.5b00144.
  • Linglong, K., X. Dandan, H. Zaixin, W. Fengqiang, G. Shihan, F. Jilong, P. Xiya, D. Xiaohan, D. Xiaoying, L. Baoxuan, et al. 2019. Nanocellulose-reinforced polyurethane for waterbornewood coating. Molecules 24:1–13.
  • Lisdayana, N., F. Fahma, T. C. Sunarti, and E. S. Iriani. 2020. Thermoplastic starch–PVA nanocomposite films reinforced with nanocellulose from oil palm empty fruit bunches (OPEFBs): Effect of starch type. Journal of Natural Fibers 17:1069–80. doi:10.1080/15440478.2018.1558142.
  • Ludueña, L., D. Fasce, V. A. Alvarez, and P. M. Stefani. 2011. Nanocellulose from rice husk following alkaline treatment to remove silica. BioResources 6:1440–53.
  • Malucelli, L. C., M. M. Jordao, C. Lomonaco, D. Lacerda, L. G. Carvalho Filho, M. A. S. Carvalho Filho, and W. L. E. Magalhães. 2018. Influence of cellulose chemical pretreatment on energy consumption and viscosity of produced cellulose nanofibers (CNF) and mechanical properties of nanopaper. Cellulose 26::1667–81. doi:10.1007/s10570-018-2161-0
  • Mocktar, F. A., Razab, M. K. A. A. and Noor, A. M. 2020. Incorporating kenaf and oil palm nanocellulose in building materials for indoor radon gas emanation reduction. Radiation Protection Dosimetry 189:69–75
  • Mocktar, N. A., Razab, M. K. A. A., Noor, A. M. and Abdullah, N. H. 2020. Preparation and characterization of kenaf and oil palm nanocellulose by acid hydrolysis method. Materials Science Forum 1010:495–500
  • Mohammad, T. I., M. A. Mohammad, P. Alessia, M. Alessio, and Z. Marina. 2014. Preparation of Nanocellulose: A Review. AATCC Journal of Research 1: 17–23.
  • Mohd, N. H., N. F. H. Ismail, J. I. Zahari, W. Fathilah, H. Kargarzadeh, S. Ramli, I. Ahmad, M. A. Yarmo, and R. Othaman. 2016. Effect of aminosilane modification on nanocrystalline cellulose properties. Journal of Nanomaterials 2016:1–8. doi:10.1155/2016/4804271.
  • Morán, J. I., V. A. Alvarez, V. P. Cyras, and A. Vázquez. 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–59. doi:10.1007/s10570-007-9145-9.
  • Mussatto, S. I., M. Fernandes, A. M. Milagres, and I. C. Roberto. 2008. Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzyme and Microbial Technology 43:124–29. doi:10.1016/j.enzmictec.2007.11.006.
  • Nobuta, K., H. Teramura, H. Ito, C. Hongo, H. Kawaguchi, C. Ogino, A. Kondo, and T. Nishino. 2016. Characterization of cellulose nanofiber sheets from different refining processes. Cellulose 23:403–14. doi:10.1007/s10570-015-0792-y.
  • Patchiya, P., R. Prasert, H. Xiaogang, X. Guangwen, A. Abuliti, and G. Guoqing. 2018. Nanocellulose: Extraction and application. Carbon Resources Conversion 1:32–43. doi:10.1016/j.crcon.2018.05.004.
  • Priyadarshana, R. W. I. B., P. E. Kaliyadasa, S. R. W. M. C. J. K. Ranawana, and K. G. C. Senarathna. 2020. Biowaste management: Banana fiber utilization for product development. Journal of Natural Fibers 17:1–11. doi:10.1080/15440478.2020.1776665.
  • Raha, S., B. Nikolay, M. L. Amine, S. Suraj, L. Igor, and M. Sergiy. 2020. Adhesion and stability of nanocellulose coatings on flat polymer films and textiles. Molecules 25:2–18.
  • Rambabu, N., S. Panthapulakkal, M. Sain, and A. K. Dalai. 2016. Production of nanocellulose fibers from pinecone biomass: Evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Industrial Crops and Products 83:746–54. doi:10.1016/j.indcrop.2015.11.083.
  • Razab, M. K. A. A., R. S. M. Ghani, A. M. Noor, N. A. Mocktar, F. A. M. Zin, N. H. Abdullah, N. A. A. N. Yusuf, and M. Mohamed. 2019. Kenaf cellulose nanofibrils as mechanical enhancers of composite brick. AIP Conference Proceedings 2068:020071–1–020047–5.
  • Reddy, N., and Y. Yang. 2005. Structure and properties of high quality natural cellulose fibres from cornstalks. Polymer 46:5494–500. doi:10.1016/j.polymer.2005.04.073.
  • Salehudin, M. H., E. Saleh, I. Ida, S. Nur, and H. Mamat. 2012. Cellulose nanofibre isolation and its fabrication into bio-polymer - A review. Paper Presented at International Conference on Agricultural and Food Engineering for Life (Cafei2012), Putrajaya, Malaysia, November 26.
  • Salman, S., S. Amir, and G. M. V. D. V. Theo. 2014. Electroacoustic characterization of conventional and electrosterically stabilized nanocrystalline celluloses. Journal of Colloid and Interface Science 432:151–57. doi:10.1016/j.jcis.2014.06.061.
  • Segal, L. G. J. M. A., J. J. Creely, A. E. Martin, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29:786–94. doi:10.1177/004051755902901003.
  • Shuji, F., T. Eiji, and K. Katsushi. 2017. Nanocellulose-stabilized pickering emulsions and their applications. Science and Technology of Advanced Materials 18:959–71. doi:10.1080/14686996.2017.1401423.
  • Sorieul, M., A. Dickson, S. J. Hill, and H. Pearson. 2016. Plant fibre: Molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite. Materials 9:1–36. doi:10.3390/ma9080618.
  • Sulaiman, H. S., C. H. Chan, C. H. Chia, S. Zakaria, and S. N. S. Jaafar. 2015. Isolation and fractionation of cellulose nanocrystals from kenaf core. Sains Malaysiana 44:1635–42.
  • Sulaiman, S., M. N. Mokhtar, M. N. Naim, A. S. Baharuddin, M. A. M. Salleh, and A. Sulaiman. 2016. Development of cellulose nanofibre (cnf) derived from kenaf bast fibre and it’s potential in enzyme immobilization support. Malaysian Journal of Analytical Sciences 20:309–17. doi:10.17576/mjas-2016-2002-12.
  • Sundqvist, B., and T. Moren. 2002. The influence of wood polymers and extractives on wood colour induced by hydrothermal treatment. European Journal of Wood and Wood Products 60:375–76. doi:10.1007/s00107-002-0320-2.
  • Tibolla, H., F. M. Pelissari, M. I. Rodrigues, and F. C. Menegalli. 2017. Cellulose nanofibres produced from banana peel by enzymatic treatment: Study of process conditions. Industrial Crops and Products 95:664–74. doi:10.1016/j.indcrop.2016.11.035.
  • Tibolla, H., Pelissari, F. M. and Menegalli, F. C. (2014). Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment, Food Science and Technology 59, 1311–1318
  • Velásquez-Cock, J., C. Castro, P. Gañán, M. Osorio, J. L. Putaux, A. Serpa, and R. Zuluaga. 2016. Influence of the maturation time on the physico-chemical properties of nanocellulose and associated constituents isolated from pseudostems of banana plant c.v. valery. Industrial Crops and Products 83:551–60. doi:10.1016/j.indcrop.2015.12.070.
  • Wei, L. J., X. Wang, Q. Chen, J. Chang, G. Kong, L. Su, and Y. Liu. 2012. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydrate Polymers 90:1609–13. doi:10.1016/j.carbpol.2012.07.038.
  • Wenshuai, C., Y. Haipeng, L. Yixing, H. Yunfei, Z. Mingxin, and C. Peng. 2011. Isolation and characterization of cellulose nanofibres from four plant cellulose fibres using a chemical-ultrasonic process. Cellulose 18:433–42. doi:10.1007/s10570-011-9497-z.
  • Wyman, C. E., B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, and Y. Y. Lee. 2005. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresources Technology 96:2026–32. doi:10.1016/j.biortech.2005.01.018.
  • Yusuf, N. A. A. N., M. K. A. A. Razab, M. B. A. Bakar, K. J. Yen, C. W. Tung, R. S. M. Ghani, and M. N. Nordin. 2019. Determination of structural, physical, and thermal properties of biocomposite thin film from waste banana peel. Jurnal Teknologi 81:91–100.
  • Zuluaga, R., J. L. Putaux, J. Cruz, J. Vélez, M. I. Ganan, and P. Gañán. 2009. Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features. Carbohydrate Polymers 76:51–59. doi:10.1016/j.carbpol.2008.09.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.