184
Views
2
CrossRef citations to date
0
Altmetric
Review

Dye Fed Silkworms to Produce Naturally Coloured Silk Cocoons

& ORCID Icon

References

  • Anto Anumol, R. S. V., and G. S. 2018. Nutritional parameters of CSR2 and PM X CSR2 strains of Bombyx mori fed with neutral red as a food supplement. WSN 103:168–77.
  • Anuya, N., K. Trivedy, M. Hasan, P. Suyana, S. Sengupta, A. Lele, R. Manchala, S. Kumar, G. M. Nirmal, H. Khandelwal, et al. 2013. Uptake of azo dyes into silk glands for production of colored silk cocoons using a green feeding approach. ACS Sustainable Chem. Eng 2::312–17. doi:10.1021/sc400355k.
  • Cai, L., H. Shao, X. Hu., and Y. Zhang. 2015. Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles. ACS Sustainable Chemistry & Engineering 3 (10):2551–57. doi:10.1021/acssuschemeng.5b00749.
  • Campbell, F. L. 1932. Preliminary experiments on the toxicity of certain coal-tar dyes for the silkworm. Journal of Economic Entomology 25:905–17. doi:10.1093/jee/25.4.905.
  • Cheng, L., H. Zhao, H. Huang, Li Bo, L. Y. K. Li, L. Robert K. Y., X.-Q. Feng, and ,. F. Dai. 2019. Quantum dots-reinforced luminescent silkworm silk with superior mechanical properties and highly stable fluorescence. Journal of Materials Science 54 (13):9945–57. doi:10.1007/s10853-019-03469-w.
  • Fan, S., X. Zheng, Q. Zhan, H. Zhang, H. Shao, J. Wang, C. Cao, M. Zhu, D. Wang, and Y. Zhang. 2019. Super-strong and intrinsically fluorescent silkworm silk from carbon nanodots feeding. Nano-Micro Letters Article number. 11 (1):75. doi:10.1007/s40820-019-0303-z.
  • Ji, J. Y., C. M. Kang., K. Li, J. He, and Y. Ma. 2014. Comparison of structures of luminescent silkworm silk prepared by feeding and dyeing. Materials Research Innovations 18:SS4–820. doi:10.1179/1432891714Z.000000000787.
  • Kang, P.-D., M.-J. Kim, I.-Y. Jung, K.-Y. Kim, Y.-S. Kim, G.-B. Sung, and B.-H. Sohn. 2011. Production of colored cocoons by feeding dye-added artificial diet. International Journal of Industrial Entomology 22:21–23. doi:10.7852/ijie.2011.22.1.21.
  • Kumar, D., J. P. Pandey, A. K. Sinha, S. Sala, P. K. Mishra, and B. C. Prasad. 2012. Evaluation of novel tasar silkworm feed for Antheraea mylitta: It’s impact on rearing, cocoon trait and biomolecular profile. American Journal of Biochemistry and Molecular Biology 3 (1):167–74. doi:10.3923/ajbmb.2013.167.174.
  • Kun, L., J. Zhao, J. Zhang, J. Jinyan, Y. Ma, L. Xiangyang, and X. Hongyao. 2015. Direct in vivo functionalizing silkworm fibroin via molecular recognition. ACS Biomater. Sci. Eng 7::494–503. doi:10.1021/ab5001468.
  • Manuela, M., M. A. Durso, L. A. Laura Favaretto, L. M. A. Capobianco, V. A. Benfenati, A. A. Sagnella, G. A. Ruani, M. C. Muccini, R. C. Zamboni, V. A. Fattoria, et al. 2012. Silk doped with a bio-modified dye as a viable platform for eco-friendly luminescent solar concentrators. RSC Advances 23:8610.
  • Pedro, B., and P. T. Michael. 1970. Retardation of growth rate in Aedes Aegypti (L.) Larvae exposed to vital dyes. Journal of Medical Entomology 7:693–96. doi:10.1093/jmedent/7.6.693.
  • Sai, Z., X. Yunmin, F. Qiang, J. Ling, Z. Xiang, and H. Ningjia. 2011. Proteomic analysis of larval midgut from the silkworm (Bombyx mori). Comparative and Functional Genomics. doi:10.1155/2011/876064.
  • Simionato, J. I., L. D. G. Villalobos, M. K. Bulla, F. A. G. Coró, and J. C. Garcia. 2014. Application of chitin and chitosan extracted from silkworm chrysalides in the treatment of textile effluents contaminated with remazol dyes. Acta Scientiarum. Technology 36 (4):693–98. doi:10.4025/actascitechnol.v36i4.24428.
  • Tansil, N. C., Y. Li, C. P. Teng, S. Zhang, K. Y. Win, X. Chen, X. Y. Liu, and M.-Y. Han. 2011. Intrinsically colored and luminescent silk. Advanced Materials 23:1463–66. doi:10.1002/adma.201003860.
  • Trivedy Kanika, K., S. Sangappa, S. N. Kumar, and B. B. Bindroo. 2016. Production of pink colored silk fabric dyed using a “green” dye-fed silkworm approach. Aatcc Review 16 (1):48–57. doi:10.14504/ar.16.1.3.
  • Vitor, S. R., W. A. Hamerskia Fabiane, R. M. Thiago, G. L. Marcelino, and S. P. Agnes. 2014. Equilibrium, kinetic, and thermodynamic studies on the biosorption of Bordeaux S dye by sericin powder derived from cocoons of the silkworm Bombyx mori. Balaban Desalination Publications 57:5119–529. doi:10.1080/19443994.2014.996776.
  • Vitthalrao, K. B., and K. R. Eric. 2018. Influence of aqueous solution of eurhodin treated mulberry leaves on the quality of cocoons and silk filament in silkworm, Bombyx mori (L) Races: Bivoltine Crossbreed [(CSR6 x CSR26) x (CSR2 x CSR27)] and multivoltine crossbreed [(PM x CSR2)]. International Journal of Research in Science and Engineering 6:22–37.
  • Werner, B. 1939. The natural pigments of silk. Textile Research 9:397–99. doi:10.1177/004051753900901102.
  • Zhong-hua, Z., Y. Hui-juan, C. Ming, L. Cheng-fu, Y.-Z. Zhang, C. Ke-ping, Y. Wang, Y. Mei-lan, Y. Fang, L. Jian-ying, et al. 2008. Comparative proteomic analysis between the domesticated silkworm (Bombyx mori) reared on fresh mulberry leaves and on artificial diet. Journal of Proteome Research 7 (12):5103–11. doi:10.1021/pr800383r.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.