534
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Extraction of Nanofibrillated Cellulose from Water Hyacinth Using a High Speed Homogenizer

, , , , , & show all

References

  • Abdul Khalil, H. P. S., Y. Davoudpour, M. N. Islam, A. Mustapha, K. Sudesh, R. Dungani, and M. Jawaid. 2014. Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers 99:649–65. doi:10.1016/j.carbpol.2013.08.069.
  • Almgren, K. M., E. K. Gamstedt, P. Nygard, F. Malmberg, J. Lindblad, and M. Lindstrom. 2009. Role of fibre-fibre and fibre-matrix adhesion in stress transfer in composites made from resin-impregnated paper sheets. International Journal of Adhesion and Adhesives 29 (5):551–57. doi:10.1016/j.ijadhadh.2008.11.002.
  • Alzate-Arbeláez, A. F., E. Dorta, C. López-Alarcón, F. B. Cortés, and B. A. Rojano. 2019. Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties. Food Chemistry 294 (1):503–17. doi:10.1016/j.foodchem.2019.05.085.
  • Amiralian, N., P. K. Annamalai, P. Memmott, and D. J. Martin. 2015. Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods. Cellulose 22 (4):2483–98. doi:10.1007/s10570-015-0688-x.
  • Arana-Cuenca, A., X. Tovar-Jiménez, E. Favela-Torres, I. Perraud-Gaime, A. E. González-Becerra, A. Martínez, C. L. Moss-Acosta, Y. Mercado-Flores, and A. Téllez-Jurado. 2019. Use of water hyacinth as a substrate for the production of filamentous fungal hydrolytic enzymes in solid-state fermentation. 3 Biotech 9 (1):21. doi:10.1007/s13205-018-1529-z.
  • Asrofi, M., H. Abral, A. Kasim, A. Pratoto, M. Mahardika, and F. Hafizulhaq. 2018. Mechanical properties of a water hyacinth nanofiber cellulose reinforced thermoplastic starch bionanocomposite: Effect of ultrasonic vibration during processing. Fibers 6 (2):40. doi:10.3390/fib6020040.
  • Berglund, L., M. Noël, Y. Aitomäki, T. Öman, and K. Oksman. 2016. Production potential of cellulose nanofibers from industrial residues: Efficiency and nanofiber characteristics. Industrial Crops and Products 92:84–92. doi:10.1016/j.indcrop.2016.08.003.
  • Bian, H., Y. Gao, R. Wang, Z. Liu, W. Wu, and H. Dai. 2018. Contribution of lignin to the surface structure and physical performance of cellulose nanofibrils film. Cellulose 25 (2):1309–18. doi:10.1007/s10570-018-1658-x.
  • Boufi, S., and A. Chaker. 2016. Easy production of cellulose nanofibrils from corn stalk by a conventional high speed blender. Industrial Crops and Products 93:39–47. doi:10.1016/j.indcrop.2016.05.030.
  • Brebu, M., and C. Vasile. 2010. Thermal degradation of lignin – A review. Cellulose Chemistry Technology 44 (9):353–63.
  • Bronzato, G. R. F., S. M. Ziegler, R. C. Silva, I. Cesarino, and A. L. Leão. 2017. Characterization of the pre-treated biomass of Eichhornia crassipes (water hyacinth) for the second generation ethanol production. Molecular Crystals and Liquid Crystals 655 (1):224–35. doi:10.1080/15421406.2017.1360696.
  • Bronzato, G. R. F., S. M. Ziegler, R. D. C. D. Silva, I. Cesarino, and A. L. Leão. 2019. Water hyacinth second-generation ethanol production: A mitigation alternative for an environmental problem. Journal of Natural Fibers 16 (8):1201–08. doi:10.1080/15440478.2018.1458000.
  • Chaker, A., P. Mutjé, M. R. Vilar, and S. Boufi. 2014. Agriculture crop residues as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose 21 (6):4247–59. doi:10.1007/s10570-014-0454-5.
  • Chen, C., Y. Wang, Q. Wu, Z. Wan, D. Li, and Y. Jin. 2020. Highly strong and flexible composite hydrogel reinforced by aligned wood cellulose skeleton via alkali treatment for muscle-like sensors. Chemical Engineering Journal 400:125876. doi:10.1016/j.cej.2020.125876.
  • Chen, H., X. Wang, J. J. Bozell, X. Feng, J. Huang, Q. Li, A. J. Ragauskas, S. Wang, and C. Mei. 2019. Effect of solvent fractionation pretreatment on energy consumption of cellulose nanofabrication from switchgrass. Journal of Materials Science 54 (10):8010–22. doi:10.1007/s10853-019-03413-y.
  • Chen, W. S., H. P. Yu, Y. X. Liu, Y. F. Hai, M. X. Zhang, and P. Chen. 2011. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18 (2):433–42. doi:10.1007/s10570-011-9497-z.
  • Cherian, B. M., A. L. Leão, S. F. De Souza, S. Thomas, L. A. Pothan, and M. Kottaisamy. 2010. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers 81 (3):720–25. doi:10.1016/j.carbpol.2010.03.046.
  • Chirayil, C. J., J. Joy, L. Mathew, M. Mozetic, J. Koetz, and S. Thomas. 2014. Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Industrial Crops and Products 59:27–34. doi:10.1016/j.indcrop.2014.04.020.
  • Ciftci, D., R. A. Flores, and M. D. A. Saldaña. 2018. Cellulose fiber isolation and characterization from sweet blue lupin hull and canola straw. Journal of Environmental Polymer Degradation 26 (7):2773–81. doi:10.1007/s10924-017-1164-5.
  • Costa, S., I. Rugiero, C. Larenas Uria, P. Pedrini, and E. Tamburini. 2018. Lignin degradation efficiency of chemical pre-treatments on banana rachis destined to bioethanol production. Biomolecules 8 (4):141. doi:10.3390/biom8040141.
  • Deepa, B., E. Abraham, B. M. Cherian, A. Bismarck, J. J. Blaker, L. A. Pothan, A. L. Leao, S. F. De Souza, and M. Kottaisamy. 2011. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresource Technology 102 (2):1988–97. doi:10.1016/j.biortech.2010.09.030.
  • Delgado-Aguilar, M., I. González, Q. Tarrés, M. À. Pèlach, M. Alcalà, and P. Mutjé. 2016. The key role of lignin in the production of low-cost lignocellulosic nanofibres for papermaking applications. Industrial Crops and Products 86:295–300. doi:10.1016/j.indcrop.2016.04.010.
  • Djafari Petroudy, S. R. 2017. 3 - Physical and mechanical properties of natural fibers. In Advanced High Strength Natural Fibre Composites in Construction, ed. F. Fan, 59–83. Woodhead Publishing.
  • Ehman, N. V., F. E. Felissia, Q. Tarrés, M. E. Vallejos, M. Delgado-Aguilar, P. Mutjé, and M. C. Area. 2020. Effect of nanofiber addition on the physical–mechanical properties of chemimechanical pulp handsheets for packaging. Cellulose. doi:10.1007/s10570-020-03207-5.
  • Eichhorn, S. J., and W. W. Sampson. 2005. Statistical geometry of pores and statistics of porous nanofibrous assemblies. Journal of the Royal Society Interface 2 (4):309–18. doi:10.1098/rsif.2005.0039.
  • El Achaby, M., M. Ruesgas-Ramón, N.-E. H. Fayoud, M. C. Figueroa-Espinoza, V. Trabadelo, K. Draoui, and H. Ben Youcef. 2019. Bio-sourced porous cellulose microfibrils from coffee pulp for wastewater treatment. Cellulose 26 (6):3873–89. doi:10.1007/s10570-019-02344-w.
  • Fareez, I. M., N. A. Ibrahim, W. Yaacob, N. A. M. Razali, A. H. Jasni, and F. A. Aziz. 2018. Characteristics of cellulose extracted from Josapine pineapple leaf fibre after alkali treatment followed by extensive bleaching. Cellulose 25 (8):4407–21. doi:10.1007/s10570-018-1878-0.
  • Franco, T. S., D. C. Potulski, L. C. Viana, E. Forville, A. S. De Andrade, and G. I. B. De Muniz. 2019. Nanocellulose obtained from residues of peach palm extraction (Bactris gasipaes). Carbohydrate Polymers 218:8–19. doi:10.1016/j.carbpol.2019.04.035.
  • French, A. D., and M. Santiago Cintrón. 2013. Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20 (1):583–88. doi:10.1007/s10570-012-9833-y.
  • Guna, V., M. Ilangovan, M. G. Anantha Prasad, and N. Reddy. 2017. Water hyacinth: A unique source for sustainable materials and products. ACS Sustainable Chemistry & Engineering 5 (6):4478–90. doi:10.1021/acssuschemeng.7b00051.
  • Hao, W., M. Wang, F. Zhou, H. Luo, X. Xie, F. Luo, and R. Cha. 2020. A review on nanocellulose as a lightweight filler of polyolefin composites. Carbohydrate Polymers 243::116466. doi:10.1016/j.carbpol.2020.116466.
  • Henriksson, M., L. A. Berglund, P. Isaksson, T. Lindstrom, and T. Nishino. 2008. Cellulose nanopaper structures of high toughness. Biomacromolecules 9 (6):1579–85. doi:10.1021/bm800038n.
  • Hu, Y., L. Tang, Q. Lu, S. Wang, X. Chen, and B. Huang. 2014. Preparation of cellulose nanocrystals and carboxylated cellulose nanocrystals from borer powder of bamboo. Cellulose 21 (3):1611–18. doi:10.1007/s10570-014-0236-0.
  • Isogai, A., T. Saito, and H. Fukuzumi. 2011. TEMPO-oxidized cellulose nanofibers. Nanoscale 71 (3):71–85. doi:10.1039/C0NR00583E.
  • Jain, D., H. Sekhon, T. K. Bera, and R. Jain. 2020. Comparison of different hydrophobic treatments for the durability improvement of palmyra natural fiber composites under hydrothermal ageing environments. Journal of Natural Fibers 17 (11):1668–82. doi:10.1080/15440478.2019.1588828.
  • Jiang, Y., X. Liu, Q. Yang, X. Song, C. Qin, S. Wang, and K. Li. 2019. Effects of residual lignin on composition, structure and properties of mechanically defibrillated cellulose fibrils and films. Cellulose 26 (3):1–17. doi:10.1007/s10570-018-02229-4.
  • Johar, N., I. Ahmad, and A. Dufresne. 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products 37 (1):93–99. doi:10.1016/j.indcrop.2011.12.016.
  • Kępa, K., C. M. Chaléat, N. Amiralian, W. Batchelor, L. Grøndahl, and D. J. Martin. 2019. Evaluation of properties and specific energy consumption of spinifex-derived lignocellulose fibers produced using different mechanical processes. Cellulose 26 (11):6555–69. doi:10.1007/s10570-019-02567-x.
  • Khawas, P., and S. C. Deka. 2016. Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydrate Polymers 137:608–16. doi:10.1016/j.carbpol.2015.11.020.
  • Kumar, R., N. R. J. Hynes, P. Senthamaraikannan, S. Saravanakumar, and M. R. Sanjay. 2018. Physicochemical and thermal properties of ceiba pentandra bark fiber. Journal of Natural Fibers 15 (6):822–29. doi:10.1080/15440478.2017.1369208.
  • Kumar, V., P. Pathak, and N. K. Bhardwaj. 2020. Facile chemo-refining approach for production of micro-nanofibrillated cellulose from bleached mixed hardwood pulp to improve paper quality. Carbohydrate Polymers 238: 116118.
  • Laluce, C., I. U. Roldan, E. Pecoraro, L. I. Igbojionu, and C. A. Ribeiro. 2019. Effects of pretreatment applied to sugarcane bagasse on composition and morphology of cellulosic fractions. Biomass& Bioenergy 126:231–38. doi:10.1016/j.biombioe.2019.03.002.
  • Li, J., X. Wei, Q. Wang, J. Chen, G. Chang, L. Kong, J. Su, and Y. Liu. 2012. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydrate Polymers 90 (4):1609–13. doi:10.1016/j.carbpol.2012.07.038.
  • Lu, P., Y. Yang, R. Liu, X. Liu, J. Ma, M. Wu, and S. Wang. 2020. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging. Carbohydrate Polymers 116831. doi:10.1016/j.carbpol.2020.116831.
  • Malucelli, L. C., M. Matos, C. Jordão, D. Lomonaco, L. G. Lacerda, M. A. S. Carvalho Filho, and W. L. E. Magalhães. 2019. Influence of cellulose chemical pretreatment on energy consumption and viscosity of produced cellulose nanofibers (CNF) and mechanical properties of nanopaper. Cellulose 26 (3):1667–81. doi:10.1007/s10570-018-2161-0.
  • Megashah, L. N., H. Ariffin, M. R. Zakaria, M. A. Hassan, Y. Andou, and F. N. M. Padzil. 2020. Modification of cellulose degree of polymerization by superheated steam treatment for versatile properties of cellulose nanofibril film. Cellulose 27 (13):7417–29. doi:10.1007/s10570-020-03296-2.
  • Motta Neves, R., K. Silveira Lopes, M. G. V. Zimmermann, M. Poletto, and A. J. Zattera. 2020. Cellulose nanowhiskers extracted from TEMPO-oxidized curaua fibers. Journal of Natural Fibers 17 (9):1355–65. doi:10.1080/15440478.2019.1568346.
  • Naderi, A., T. Lindström, and J. Sundström. 2015. Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose? Cellulose 22 (2):1147–57. doi:10.1007/s10570-015-0576-4.
  • Naduparambath, S., and E. Purushothaman. 2016. Sago seed shell: Determination of the composition and isolation of microcrystalline cellulose (MCC). Cellulose 23 (3):1803–12. doi:10.1007/s10570-016-0904-3.
  • Naeem, M. A., Q. Siddiqui, M. Mushtaq, A. Farooq, Z. Pang, and Q. Wei. 2020. Insitu self-assembly of bacterial cellulose on banana fibers extracted from peels. Journal of Natural Fibers 17 (9):1317–28. doi:10.1080/15440478.2018.1563580.
  • Nazir, M. S., B. A. Wahjoedi, A. W. Yussof, and M. A. Abdullah. 2013. Eco-friendly extraction and characterization of cellulose from oil palm empty fruit bunches. Bioresources 8 (2):2161–72. doi:10.15376/biores.8.2.2161-2172.
  • Nechyporchuk, O., M. N. Belgacem, and J. Bras. 2016. Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products 93:2–25. doi:10.1016/j.indcrop.2016.02.016.
  • Nobuta, K., H. Teramura, H. Ito, C. Hongo, H. Kawaguchi, C. Ogino, A. Kondo, and T. Nishino. 2016. Characterization of cellulose nanofiber sheets from different refining processes. Cellulose 23 (1):403–14. doi:10.1007/s10570-015-0792-y.
  • Ouyang, S., J. Shi, H. Qiao, Z. Zheng, J. Ouyang, and C. Lai. 2021. The key role of delignification in overcoming the inherent recalcitrance of Chinese fir for biorefining. Bioresource Technology 319::124154. doi:10.1016/j.biortech.2020.124154.
  • Page, D. H. 1969. A theory for the tensile strength of paper. Tappi Journal 52 (4):674–81.
  • Page, D. H., R. S. Seth, and J. H. Degrace. 1979. The elastic modulus of paper 1. The controlling mechanisms. Tappi Journal 62 (9):99–102.
  • Pakutsah, K., and D. Aht-Ong. 2020. Facile isolation of cellulose nanofibers from water hyacinth using water-based mechanical defibrillation: Insights into morphological, physical, and rheological properties. International Journal of Biological Macromolecules 145:64–76. doi:10.1016/j.ijbiomac.2019.12.172.
  • Pelissari, F. M., P. J. D. A. Sobral, and F. C. Menegalli. 2014. Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21 (1):417–32. doi:10.1007/s10570-013-0138-6.
  • Phanthong, P., P. Reubroycharoen, X. Hao, G. Xu, A. Abudula, and G. Guan. 2018. Nanocellulose: Extraction and application. Carbon Resources Conversion 1 (1):32–43. doi:10.1016/j.crcon.2018.05.004.
  • Prithivirajan, R., P. Narayanasamy, N. A. Al-Dhabi, P. Balasundar, R. Shyam Kumar, K. Ponmurugan, T. Ramkumar, and S. Senthil. 2020. Characterization of Musa paradisiaca L. cellulosic natural fibers from agro-discarded blossom petal waste. Journal of Natural Fibers 17 (11):1640–53. doi:10.1080/15440478.2019.1588826.
  • Segal, L., J. J. Creely, A. E. Martin Jr, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29 (10):786–94. doi:10.1177/004051755902901003.
  • Senthamaraikannan, P., M. R. Sanjay, K. S. Bhat, N. H. Padmaraj, and M. Jawaid. 2019. Characterization of natural cellulosic fiber from bark of Albizia amara. Journal of Natural Fibers 16 (8):1124–31. doi:10.1080/15440478.2018.1453432.
  • Singh, A., and N. R. Bishnoi. 2013. Comparative study of various pretreatment techniques for ethanol production from water hyacinth. Industrial Crops and Products 44:283–89. doi:10.1016/j.indcrop.2012.11.026.
  • Sofla, R. K., M. W. Batchelor, J. Kosinkova, R. Pepper, R. Brown, and T. Rainey. 2019. Cellulose nanofibres from bagasse using a high speed blender and acetylation as a pretreatment. Cellulose 26 (8):4799–814. doi:10.1007/s10570-019-02441-w.
  • Spence, K. L., R. A. Venditti, O. J. Rojas, Y. Habibi, and J. J. Pawlak. 2011. A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18 (4):1097–111. doi:10.1007/s10570-011-9533-z.
  • Sudiarto, S. I. A., A. Renggaman, and H. L. Choi. 2019. Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics. Journal of Environmental Management 231:763–69. doi:10.1016/j.jenvman.2018.10.070.
  • Sun, D., A. J. Onyianta, D. O’Rourke, G. Perrin, C.-M. Popescu, L. H. Saw, Z. Cai, and M. Dorris. 2020. A process for deriving high quality cellulose nanofibrils from water hyacinth invasive species. Cellulose 27 (7):3727–40. doi:10.1007/s10570-020-03038-4.
  • Sundari, M., and A. Ramesh. 2012. Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth Eichhornia crassipes. Carbohydrate Polymers 87:1701–05.
  • Syafri, E., S. Jamaluddin, A. Wahono, M. Irwan, A. H. Sari, and A. Fudholi. 2019a. Characterization and properties of cellulose microfibers from water hyacinth filled sago starch biocomposites. International Journal of Biological Macromolecules 137:119–25. doi:10.1016/j.ijbiomac.2019.06.174.
  • Syafri, E., A. Kasim, H. Abral, and A. Asben. 2019b. Cellulose nanofibers isolation and characterization from ramie using a chemical-ultrasonic treatment. Journal of Natural Fibers 16 (8):1145–55. doi:10.1080/15440478.2018.1455073.
  • Tanpichai, S. 2020. Facile preparation of cellulose nanofibers prepared by TEMPO-mediated oxidation. IOP Conference Series: Materials Science and Engineering 773::012001. doi:10.1088/1757-899X/773/1/012001.
  • Tanpichai, S., S. K. Biswas, S. Witayakran, and H. Yano. 2019a. Water Hyacinth: A sustainable lignin-poor cellulose source for the production of cellulose nanofibers. ACS Sustainable Chemistry & Engineering 7 (23):18884–93. doi:10.1021/acssuschemeng.9b04095.
  • Tanpichai, S., S. K. Biswas, S. Witayakran, and H. Yano. 2020a. Optically transparent tough nanocomposites with a hierarchical structure of cellulose nanofiber networks prepared by the Pickering emulsion method. Composites Part A: Applied Science and Manufacturing 132::105811.
  • Tanpichai, S., W. W. Sampson, and J. S. Eichhorn. 2014. Stress transfer in microfibrillated cellulose reinforced poly(vinyl alcohol) composites. Composites Part A: Applied Science and Manufacturing 65:186–91. doi:10.1016/j.compositesa.2014.06.014.
  • Tanpichai, S., W. W. Sampson, and S. J. Eichhorn. 2012. Stress-transfer in microfibrillated cellulose reinforced poly(lactic acid) composites using Raman spectroscopy. Composites Part A: Applied Science and Manufacturing 43 (7):1145–52. doi:10.1016/j.compositesa.2012.02.006.
  • Tanpichai, S., and S. Witayakran. 2017. All-cellulose composite laminates prepared from pineapple leaf fibers treated with steam explosion and alkaline treatment. Journal of Reinforced Plastics and Composites 36 (16):1146–55. doi:10.1177/0731684417704923.
  • Tanpichai, S., and S. Witayakran. 2018. All-cellulose composites from pineapple leaf microfibers: Structural, thermal, and mechanical properties. Polymer Composite 39 (3):895–903. doi:10.1002/pc.24015.
  • Tanpichai, S., S. Witayakran, and A. Boonmahitthisud. 2019. Study on structural and thermal properties of cellulose microfibers isolated from pineapple leaves using steam explosion. Journal of Environmental Chemical Engineering 7 (1):102836. doi:10.1016/j.jece.2018.102836.
  • Tanpichai, S., S. Witayakran, Y. Srimarut, W. Woraprayote, and Y. Malila. 2019b. Porosity, density and mechanical properties of the paper of steam exploded bamboo microfibers controlled by nanofibrillated cellulose. Journal of Materials Research and Technology 8 (4):3612–22. doi:10.1016/j.jmrt.2019.05.024.
  • Tanpichai, S., S. Witayakran, J. Wootthikanokkhan, Y. Srimarut, W. Woraprayote, and Y. Malila. 2020. Mechanical and antibacterial properties of the chitosan coated cellulose paper for packaging applications: Effects of molecular weight types and concentrations of chitosan. International Journal of Biological Macromolecules 155:1510–19. doi:10.1016/j.ijbiomac.2019.11.128.
  • Tanpichai, S., and J. Wootthikanokkhan. 2018. Reinforcing abilities of microfibers and nanofibrillated cellulose in poly(lactic acid) composites. Science and Engineering of Composite Materials 25 (2):395–401. doi:10.1515/secm-2016-0113.
  • Tsalagkas, D., L. Zhai, A. Kafy, J. W. Kim, H. C. Kim, and J. Kim. 2020. Production of micro- and nanofibrillated cellulose through an aqueous counter collision system followed by ultrasound: Effect of mechanical pretreatments. Journal of Natural Fibers 17 (8):1099–110. doi:10.1080/15440478.2018.1558144.
  • Uetani, K., and H. Yano. 2011. Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12 (2):348–53. doi:10.1021/bm101103p.
  • Varanasi, S., L. Henzel, S. Sharman, W. Batchelor, and G. Garnier. 2018. Producing nanofibres from carrots with a chemical-free process. Carbohydrate Polymers 184:307–14. doi:10.1016/j.carbpol.2017.12.056.
  • Wen, Y., Z. Yuan, J. Qu, C. Wang, and A. Wang. 2020. Evaluation of ultraviolet light and hydrogen peroxide enhanced ozone oxidation treatment for the production of cellulose nanofibrils. ACS Sustainable Chemistry & Engineering 8 (7):2688–97. doi:10.1021/acssuschemeng.9b06028.
  • Wu, M., Z. Sun, and X. Zhao. 2020. Effects of different modification methods on the properties of sisal fibers. Journal of Natural Fibers 17 (7):1048–57. doi:10.1080/15440478.2018.1554517.
  • Xu, J., E. F. Krietemeyer, V. M. Boddu, S. X. Liu, and W.-C. Liu. 2018. Production and characterization of cellulose nanofibril (CNF) from agricultural waste corn stover. Carbohydrate Polymers 192:202–07. doi:10.1016/j.carbpol.2018.03.017.
  • Xu, K., Z. Shi, J. Lyu, Q. Zhang, T. Zhong, G. Du, and S. Wang. 2020. Effects of hydrothermal pretreatment on nano-mechanical property of switchgrass cell wall and on energy consumption of isolated lignin-coated cellulose nanofibrils by mechanical grinding. Industrial Crops and Products 149:112317. doi:10.1016/j.indcrop.2020.112317.
  • Yang, X., S. K. Biswas, J. Han, S. Tanpichai, M.-C. Li, C. Chen, S. Zhu, A. K. Das, and H. Yano. In-press. Surface and interface engineering for nanocellulosic advanced materials. Advanced Materials.2020: 2002264.
  • Yue, Y., J. Han, G. Han, G. M. Aita, and Q. Wu. 2015a. Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: Structural, chemical and thermal properties. Industrial Crops and Products 76:355–63. doi:10.1016/j.indcrop.2015.07.006.
  • Yue, Y., J. Han, G. Han, Q. Zhang, A. D. French, and Q. Wu. 2015b. Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: Morphology, crystallinity and percentage estimation. Carbohydrate Polymers 133:438–47. doi:10.1016/j.carbpol.2015.07.058.
  • Zhao, G., J. Du, W. Chen, M. Pan, and D. Chen. 2019. Preparation and thermostability of cellulose nanocrystals and nanofibrils from two sources of biomass: Rice straw and poplar wood. Cellulose 26 (16):8625–43. doi:10.1007/s10570-019-02683-8.
  • Zhao, Y., and J. Li. 2014. Excellent chemical and material cellulose from tunicates: Diversity in cellulose production yield and chemical and morphological structures from different tunicate species. Cellulose 21 (5):3427–41. doi:10.1007/s10570-014-0348-6.
  • Zheng, K., Y. Li, M. Zhu, X. Yu, M. Zhang, L. Shi, and J. Cheng. 2017. The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors. Journal of Power Sources 366:270–77. doi:10.1016/j.jpowsour.2017.09.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.