117
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Chemical and Biological Deconstruction in the Conversion Process of Sorghum Biomass for Bioethanol

&

References

  • Agbor, V. B., N. Cicek, R. Sparling, A. Berlin, and D. B. Levin. 2011. Biomass pretreatment: Fundamentals toward application. Biotechnol 29:675–85. doi:10.1016/j.biotechadv.2011.05.005.
  • Alvira, P., E. Tomas-Pejo, M. Ballesteros, and M. J. Negro. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology 101:4851–61. doi:10.1016/j.biortech.2009.11.093.
  • Batog, J., R. Kozłowski, and A. Przepiera. 2008. Lignocellulosic composites bonded by enzymatic oxidation of lignin. Molecular Crystals and Liquid Crystals 484 (1):35–42. doi:10.1080/15421400801903387.
  • Batog, J., D. Pieprzyk-Kokocha, A. Wawro, and Z. Skibniewski. 2016. Chemical processes (acidic and alkaline) in saccharification of sorghum biomass for biofuel production. Cellulose Chemistry and Technology 50:397–400.
  • Bhatti, H., M. A. Hanif, M. Qasim, and A. Ata-ur-Rehman. 2008. Biodiesel production from waste tallow. Fuel 87 (13–14):2961–66. doi:10.1016/j.fuel.2008.04.016.
  • Burczyk, H. 2012. Przydatność jednorocznych roślin, uprawianych do produkcji biomasy na potrzeby energetyki zawodowej (Usability of the annual plants cultivated for biomass supplying to professional energy generation). Problems of Agricultural Engineering (PIR) 1 (75):59–68.
  • Call, H. P., and I. Mücke. 1997. History, overview and applications of mediated lignolytic system, especially laccase-mediator-systems (Lignozym-process). Journal of Biotechnology 53:163–202. doi:10.1016/S0168-1656(97)01683-0.
  • Chandra, R. P., R. Bura, W. E. Mabee, A. Berlin, X. Pan, and J. N. Saddler. 2007. Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosic? Advances in Biochemical Engineering/biotechnology 108:67–93. doi:10.1007/10_2007_064.
  • Chang, S., W. Li, and Y. Zhang. 2018. Impact of double alkaline peroxide pretreatment on enzymatic hydrolysis of palm fibre. Carbon Resources Conversion 1 (2):147–52. doi:10.1016/J.CRCON.2018.06.005.
  • Choudhary, S. J., S. Mehmood, H. Naz, H. Z. E. Jaafar, and M. Zia-Ul-Haq. 2015. Effect of sulfuric acid on pretreatment of YSS-10R variety of sorghum and analysis of its interaction with temperature and time. BioResources 10:2103–12. doi:10.15376/biores.10.2.2103-2112.
  • Corredor, E., P. S. Testillano, M.-J. Coronado, P. González-Melendi, R. Fernández-Pacheco, C. Marquina, M. R. Ibarra, J. M. de la Fuente, D. Rubiales, A. Pérez-de-Luque, et al. 2009. Nanoparticle penetration and transport in living pumpkin plants: In situ subcellular identification. BMC Plant Biology 9 (1):45. doi:10.1186/1471-2229-9-45.
  • Dong, J. J., J. C. Ding, Y. Zhang, L. Ma, G. C. Xu, R. Z. Han, and Y. Ni. 2016. Simultaneous saccharification and fermentation of dilute alkaline-pretreated corn stover for enhanced butanol production by Clostridium saccharobutylicum DSM 13864. FEMS Microbiol Lett 363:1–6. doi:10.1093/femsle/fnw003.
  • Dong, M., S. Wang, F. Xu, J. Wang, N. Yang, Q. Li, J. Chen, and W. Li. 2019. Pretreatment of sweet sorghum straw and its enzymatic digestion: Insight into the structural changes and visualization of hydrolysis process. Biotechnology for Biofuels 12 (1):276. doi:10.1186/s13068-019-1613-6.
  • El-Naggar, N. E., S. Deraz, and A. Khalil. 2014. Bioethanol production from lignocellulosic feedstocks based on enzymatic hydrolysis: Current status and recent developments. Biotechnol 13:1–21. doi:10.3923/biotech.2014.1.21.
  • Goshadrou, A., K. Karimi, and M. J. Taherzadeh. 2011. Improvement of sweet sorghum bagasse hydrolysis by alkali and acidic pretreatment. In Materials of the Word Renewable Energy Congress 2011, 374–80. Linköping, Sweden, 08-13 May.
  • Hendriks, A. T. W. M., and G. Zeeman. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology 100 (1):10–18. doi:10.1016/j.biortech.2008.05.027.
  • Jamaldheen, S. B., K. Sharma, A. Rani, V. S. Moholkara, and A. Goyala. 2018. Comparative analysis of pretreatment methods on sorghum (Sorghum durra) stalk agrowaste for holocellulose content. Preparative Biochemistry & Biotechnology 48 (6):457–64. doi:10.1080/10826068.2018.1466148.
  • Jiang, K., S. Ding, and B. Tang. 2019. Optimization of dilute NaOH pretreatment at mild temperatures for monomeric sugar release from sorghum pith using Response Surface Methodology. BioResour 14:3411–31. doi:10.15376/biores.14.2.3411-3431.
  • Kawai, S., T. Umezawa, and T. Higuchi. 1988. Degradation mechanisms of phenolic ß-1 lignin substructure model compounds by laccase of Coriolus versicolor. Archives of Biochemistry and Biophysics 262 (1):99–110. doi:10.1016/0003-9861(88)90172-5.
  • Lee, C. R., B. H. Sung, K. M. Lim, M. J. Kim, M. J. Sohn, J. H. Bae, and J. H. Sohn. 2017. Co-fermentation using recombinant Saccharomyces cerevisiae yeast strains hyper-secreting different cellulases for the production of cellulosic bioethanol. Scientific Reports 7:4428. doi:10.1038/s41598-017-04815-1.
  • Li, C., B. Knierim, C. Manisseri, R. Arora, H. V. Scheller, M. Auer, and S. Singh. 2010. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology 101:4900–06. doi:10.1016/j.biortech.2009.10.066.
  • Martínez, A. T., F. J. Ruiz-Dueñas, M. J. Martínez, J. C. Del Río, and A. Gutiérrez. 2009. Enzymatic delignification of plant cell wall: From nature to mill. Current Opinion in Biotechnology 20:348–57. doi:10.1016/j.copbio.2009.05.002.
  • Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31:426–28. doi:10.1021/ac60147a030.
  • Narkhede, Y. V., N. R. Firake, and K. P. Narkhede. 2018. Alkaline peroxide and laccase treatment for the delignification of Ricinus communis biomass to enhance saccharification. International Journal for Research in Applied Science and Engineering Technology 6:1135–39. doi:10.22214/ijraset.2018.3176.
  • O’Malley, D. M., R. Whetten, W. Bao, C. L. Chen, and R. R. Sederoff. 1993. The role of laccase in lignification. The Plant Journal 4:751–57. doi:10.1046/j.1365-313X.1993.04050751.x.
  • Rahikainen, J. L., R. Martin-Sampedro, H. Heikkinen, R. Rovio, K. Marjamaa, T. Tamminen, O. J. Rojas, and K. Kruus. 2013. Inhibitory effect of lignin during cellulose bioconversion: The effect of lignin chemistry on non-productive enzyme adsorption. Bioresource Technology 133:270–78. doi:10.1016/j.biortech.2013.01.075.
  • Sharma, V., S. Sharma, and A. Kuila. 2016. A review on current technological advancement of lignocellulosic bioethanol production. Journal of Applied Biotechnology & Bioengineering 1:61–66. doi:10.15406/jabb.2016.01.00011.
  • Sims, R. E. H., W. Mabee, J. N. Saddler, and M. Taylor. 2010. An overview of second generation biofuel technologies. Bioresource Technology 101:1570–80. doi:10.1016/j.biortech.2009.11.046.
  • Śliwiński, B., and F. Brzózka. 2006. Historia uprawy sorgo i wartość pokarmowa tej rośliny w uprawie na kiszonkę. Postepy Rol 1:25–37.
  • Stevulova, N., J. Cigasova, A. Estokova, E. Terpakova, A. Geffert, F. Kacik, E. Singovszka, and M. Holub. 2014. Properties Characterization of Chemically Modified Hemp Hurds. Materials 7 (12):8131–50. doi:10.3390/ma7128131.
  • Suttikul, S., T. Srinorakutara, E. Butivate, and K. Orasoon. 2016. Comparison of SHF and SSF processes for ethanol production from alkali-acid pretreated sugarcane trash. KKU Research Journal 21:229–35. doi:10.14456/kkurj.2016.35.
  • TAPPI T13 m-54. 1971. Lignin in wood - determination of lignin non-wood plant fibre sources. The Journal of the Technical Association of the Pulp and Paper Industry 54: 11.
  • TAPPI T17 m-55. 1955. Cellulose in wood. Atlanta, GA: Tappi Press.
  • TAPPI T9 m-54. 1998. Holocellulose in wood. Atlanta, GA, USA: Tappi Press.
  • Tejirian, A., and F. Xu. 2011. Inhibition of enzymatic cellulolysis by phenolic compounds. Enzyme and Microbial Technology 48 (3):239–47. doi:10.1016/j.enzmictec.2010.11.004.
  • Wu, L., M. Arakane, M. Ike, M. Wada, T. Takai, M. Gau, and K. Tokuyasu. 2011. Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse. Bioresource Technology 102:4793–99. doi:10.1016/j.biortech.2011.01.023.
  • Yaropolov, A. I., O. V. Skorobogatko, S. S. Vartanov, and S. D. Varfolomeyev. 1994. Laccase: Properties, catalytic mechanism and applicability. Applied Biochemistry and Biotechnology 49 (3):257–80. doi:10.1007/BF02783061.
  • Yu, Z., H. Jameel, H.-M. Chang, and S. Park. 2011. The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresource Technology 102 (19):9083–89. doi:10.1016/j.biortech.2011.07.001.
  • Zhang, J., X. Ma, J. Yu, X. Zhang, and T. Tan. 2011. The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse. Bioresource Technology 102 (6):4585–89. doi:10.1016/j.biortech.2010.12.093.
  • Zheng, Y., P. Zhongli, and R. Zhang. 2009. Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural and Biological Engineering 2:51–68. doi:10.3965/j.1934-6344.2009.03.051-068.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.