172
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Technical Assessment of Leaf Fibers from Curaua: An Amazonian Bioresource

, ORCID Icon, , & ORCID Icon

References

  • Ali, A., K. Shaker, Y. Nawab, M. Jabbar, T. Hussain, J. Militky, and V. Baheti. 2018. Hydrophobic treatment of natural fibers and their composites—A review. Journal of Industrial Textiles 47(8):2153–83. doi:10.1177/1528083716654468.
  • Arias, J. J. R., J. Lunz, B. D. P. Amantes, and M. D. F. V. Marques. 2020. Synthesis of polypropylene and curauá fiber composites: Towards high performance and low price materials. Fibers and Polymers 21 (6):1316–30. doi:10.1007/s12221-020-9195-2.
  • Asim, M., K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M. R. Ishak, and M. E. Hoque. 2015. A review on pineapple leaves fibre and its composites. International Journal of Polymer Science 2015:1–16. doi:10.1155/2015/950567.
  • ASTM. 2008. C1557-03, standard test method for tensile strength and young’s modulus of fibers. In Annual Book of ASTM Standards, p10, West Conshohocken, PA: ASTM International.
  • Baley, C. July 2002. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Composites. Part A, Applied Science and Manufacturing 33(7):939–48. doi: 10.1016/S1359-835X(02)00040-4.
  • Barra, B., B. Paulo, C. Alves Junior, H. Savastano Junior, and K. Ghavami. 2012. Effects of methane cold plasma in sisal fibers. Key Engineering Materials 517(June):458–68. doi:10.4028/.scientific.net/KEM.517.458.
  • Bonnet-Masimbert, P.-A., F. Gauvin, H. J. H. Brouwers, and S. Amziane. September, 2020. Study of modifications on the chemical and mechanical compatibility between cement matrix and oil palm fibres. Results in Engineering 7 (March):100150. doi:10.1016/j.rineng.2020.100150
  • Bourmaud, A., C. Morvan, A. Bouali, V. Placet, P. Perré, and C. Baley. 2013. Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. Industrial Crops and Products 44:343–51. doi:10.1016/j.indcrop.2012.11.031.
  • Chawla, N., M. Kerr, and K. K. Chawla. December 2004. Monotonic and cyclic fatigue behavior of high-performance ceramic fibers. Journal of the American Ceramic Society 88(1):101–08. doi: 10.1111/j.1551-2916.2004.00007.x.
  • Correia, V. D. C., S. F. Santos, G. Mármol, A. A. D. S. Curvelo, and H. Savastano. 2014. Potential of bamboo organosolv pulp as a reinforcing element in fiber-cement materials. Construction and Building Materials 72:65–71. doi:10.1016/j.conbuildmat.2014.09.005.
  • Costa, U. O., L. F. C. Nascimento, J. M. Garcia, W. B. A. Bezerra, G. F. Fabio Da Costa, F. S. Da Luz, W. A. Pinheiro, and S. N. Monteiro. 2020. Mechanical properties of composites with graphene oxide functionalization of either epoxy matrix or curaua fiber reinforcement. Journal of Materials Research and Technology 9 (6):13390–401. doi:10.1016/j.jmrt.2020.09.035.
  • De Los Dolores, G. M., G. H. D. Tonoli, G. R. De Paula, H. Savastano, G. R. De Paula, and H. Savastano, Fioroni, C.A., M.D. de M. Innocentini. 2020. Cement-based corrugated sheets reinforced with polypropylene fibres subjected to a high-performance curing method. Construction and Building Materials 262:120791. doi: 10.1016/j.conbuildmat.2020.120791.
  • Defoirdt, N., S. Biswas, L. De Vriese, L. Q. N. Tran, J. Van Acker, Q. Ahsan, L. Gorbatikh, A. Van Vuure, and I. Verpoest. May 2010. Assessment of the tensile properties of coir, bamboo and jute fibre. Composites. Part A, Applied Science and Manufacturing 41(5):588–95. doi: 10.1016/j.compositesa.2010.01.005.
  • Emadian, S. M., T. T. Onay, and B. Demirel. 2017. Biodegradation of bioplastics in natural environments. Waste Management 59:526–36. doi:10.1016/j.wasman.2016.10.006.
  • Ferreira, S. R., F. D. A. Silva, P. R. L. Lima, and R. D. Toledo Filho. 2015. Effect of fiber treatments on the sisal fiber properties and fiber-matrix bond in cement based systems. Construction and Building Materials 101:730–40. doi:10.1016/j.conbuildmat.2015.10.120.
  • Fidelis, M. E. A., T. V. C. Pereira, O. D. F. M. Gomes, F. De A. Silva, and R. D. T. Filho. 2013 April. The effect of fiber morphology on the tensile strength of natural fibers. Journal of Materials Research and Technology 2(2):149–57. doi:10.1016/j.jmrt.2013.02.003.
  • Filomeno, R. H., L. B. Rodier, J. E. M. Ballesteros, J. A. Rossignolo, and H. Savastano. 2020. Optimizing the modified atmosphere parameters in the carbonation process for improved fiber-cement performance. Journal of Building Engineering 32(November):101676. 2019. doi:10.1016/j.jobe.2020.101676.
  • Fiorelli J, Bueno SB, Cabral MR. 2019. Assessment of multilayer particleboards produced with green coconut and sugarcane bagasse fibers. Construct Build Material 205:1–9. doi:10.1016/j.conbuildmat.2019.02.024
  • Gonçalves, A. P. B., C. S. De Miranda, D. H. Guimarães, J. C. De Oliveira, A. M. F. Cruz, F. L. B. M. Da Silva, S. Luporini, and N. M. José. December 2015. Physicochemical, mechanical and morphologic characterization of purple banana fibers. Materials Research 18(suppl 2):205–09. doi: 10.1590/1516-1439.366414.
  • Kayondo, M., W. P. Boshoff, W. P. Boshoff, W. P. Boshoff, W. P. Boshoff, and W. P. Boshoff; Klerk, M.D. de. 2020. Durability of chemically modified sisal fibre in cement-based composites. Construction and Building Materials 241 (April):117835. doi:10.1016/j.conbuildmat.2019.117835.
  • Krahl, A. H., A. S. Holanda, D. R. Krahl, M. M. Corrêa, R. L. Oliveira, and J. J. Valsko. 2013. Anatomia foliar de ananas lucidus mill. (Bromeliaceae). Natureza Online 11 (4):161–65.
  • Laftah, W. A., and W. A. W. A. Rahaman. 2015. Chemical pulping of waste pineapple leaves fiber for kraft paper production. Journal of Materials Research and Technology 4 (3):254–61. doi:10.1016/j.jmrt.2014.12.006.
  • Leal Neta, L. S., Â. M. D. S. Costella, J. De Almeida Melo Filho, and V. M. Giacon. March 2015. Caracterização Físico-Química de fibras de curauá e sua aplicação em compósitos poliméricos. Scientia Amazonia 4(1):21. doi: 10.19178/Sci.Amazon.v4i1.21-27.
  • Leão, A. L., I. Cesarino, I. S. Machado, and R. M. Kozlowski. 2017. Curaua fibers-the queen of the fibers. In Natural fibers: Properties, mechanical behavior, functionalization and applications, Ed. Malgorzata Muzyczek and Ryszard Michal Kozlowski, 83–106. NY, USA: Nova Science Publishers Hauppauge.
  • Lefeuvre, A., A. Bourmaud, C. Morvan, and C. Baley. January 2014. Elementary flax fibre tensile properties: Correlation between stress–strain behaviour and fibre composition. Industrial Crops and Products 52(1):762–69. doi: 10.1016/j.indcrop.2013.11.043.
  • Lopes, E., B. Soares-Filho, F. Souza, R. Rajão, F. Merry, and S. Carvalho Ribeiro. 2019. Mapping the socio-ecology of non timber forest products (ntfp) extraction in the Brazilian Amazon: The case of Açaí (Euterpe Precatoria Mart) in Acre. Landscape and Urban Planning 2018. 188 (January):110–17. doi:10.1016/j.landurbplan.2018.08.025.
  • Mármol, G., L. Mattoso, A. C. Correa, C. A. Fioroni, and H. Savastano. 2020 October. Influence of cellulose pulp on the hydration followed by fast carbonation of MgO-based binders. Journal of CO2 Utilization 41(July):101236. doi:10.1016/j.jcou.2020.101236.
  • Monteiro, A. S., and J. Baruque-Ramos. 2016. Amazonian Tururi Palm fiber material (Manicaria Saccifera Gaertn.). Ed. Raul Fangueiro and Sohel Rana. Natural Fibres: Advances in Science and Technology Towards Industrial Applications 12:127–37.
  • Motta, L. A. C., V. M. John, and V. Agopyan. 2010. Thermo-mechanical treatment to improve properties of sisal fibres for composites. Materials science forum636–37 (January): 253–59. doi:10.4028/.scientific.net/msf.636-637.253
  • Martel, W. de N.D.R Salgado, I. P., and F. A. Silva. 2020. The influence of fiber treatment on the morphology, water absorption capacity and mechanical behavior of Curauá Fibers. Journal of Natural Fibers May12:1–16. doi: 10.1080/15440478.2020.1758863.
  • Naik, D. L., A. Sharma, R. R. Chada, R. Kiran, and T. Sirotiak. 2019. Modified pullout test for indirect characterization of natural fiber and cementitious matrix interface properties. Construction and Building Materials 208 (May):381–93. doi:10.1016/j.conbuildmat.2019.03.021.
  • NBR 16697-ABNT. 2018. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS NBR 16697 - Portland Cement — Requirements.
  • Nguyen, D.-L., D.-K. Thai, -T.-T. Ngo, T.-K. Tran, and -T.-T. Nguyen. 2019. Weibull modulus from size effect of high-performance fiber-reinforced concrete under compression and flexure. Construction and Building Materials 226:743–58. doi:10.1016/j.conbuildmat.2019.07.234.
  • Pardini, L. C., and L. G. B. Manhani. October, 2002. Influence of the testing gage length on the strength, young’s modulus and weibull modulus of carbon fibres and glass fibres. Materials Research 5 (4):411–20. doi:10.1590/S1516-14392002000400004
  • Pinheiro, M. A., L. G. Gomes, A. C. R. Silva, V. S. Candido, R. H. M. Reis, and S. N. Monteiro. 2019. Guaruman: A natural amazonian fiber with potential for polymer composite reinforcement. Materials Research 22 (suppl 1):1–8. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000700214&tlng=en.
  • Premkumar, T., I. Siva, and S. C. Amico. 2020. Inter and Intralayer basalt hybrid effects on the static and vibrational behaviors of Brazilian Curauá/Basalt hybrid composite. Materials Today: Proceedings 33:1212–15. doi:10.1016/j.matpr.2020.08.263.
  • Selvan, C. P., I. Siva, A. Shinde, and S. C. Amico. 2020. Tribological Investigation on nano-graphene and Curauá filled three-phase polymer composites. Materials Today: Proceedings 28:172–76. doi:10.1016/j.matpr.2020.01.499.
  • Sena Neto, A. R., M. A. M. Araujo, F. V. D. Souza, L. H. C. Mattoso, and J. M. Marconcini. May 2013. Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Industrial Crops and Products 43(1):529–37. doi: 10.1016/j.indcrop.2012.08.001.
  • Sena Neto, A. R., M. A. M. Araujo, R. M. P. Barboza, A. S. Fonseca, G. H. D. Tonoli, F. V. D. Souza, L. H. C. Mattoso, and J. M. Marconcini. 2015. Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Industrial Crops and Products 64 (February):68–78. https://linkinghub.elsevier.com/retrieve/pii/S0926669014006608.
  • Silva, F. D. A., R. D. T. Filho, J. D. A. M. Filho, and E. D. M. R. Fairbairn. May 2010. Physical and mechanical properties of durable sisal Fiber–cement composites. Construction and Building Materials 24(5):777–85. doi: 10.1016/j.conbuildmat.2009.10.030.
  • Singh, S., A. Shukla, and R. Brown. October, 2004. Pullout behavior of polypropylene fibers from cementitious matrix. Cement and Concrete Research 34 (10):1919–25. doi:10.1016/j.cemconres.2004.02.014
  • Sisti, L., S. Kalia, G. Totaro, M. Vannini, A. Negroni, G. Zanaroli, and A. Celli. 2018. Enzymatically treated curaua fibers in Poly(Butylene Succinate)-based biocomposites. Journal of Environmental Chemical Engineering 6 (4):4452–58. doi:10.1016/j.jece.2018.06.066.
  • Souza, C. P. F., E. H. De Souza, C. A. Da S. Ledo, and F. V. D. Souza. 2018. Evaluation of the Micropropagation Potential of Curauá Pineapple hybrids for fiber production. Acta Amazonica 48 (4):290–97. doi:10.1590/1809-4392201800382.
  • Spinacé, M. A. S., C. S. Lambert, K. K. G. Fermoselli, and M.-A. De Paoli. May, 2009. Characterization of Lignocellulosic Curaua Fibres. Carbohydrate Polymers 77 (1):47–53. doi:10.1016/j.carbpol.2008.12.005
  • Tomczak, F., T. H. D. Sydenstricker, and K. G. Satyanarayana. July 2007. Studies on Lignocellulosic fibers of Brazil. Part II: Morphology and properties of Brazilian coconut fibers. Composites. Part A, Applied Science and Manufacturing 38(7):1710–21. doi: 10.1016/j.compositesa.2007.02.004.
  • Tsang, Y. F., V. Kumar, P. Samadar, Y. Yang, J. Lee, Y. S. Ok, H. Song, K.-H. Kim, E. E. Kwon, and Y. J. Jeon. 2019. Production of bioplastic through food waste valorization. Environment International June. 127 (March):625–44. doi:10.1016/j.envint.2019.03.076.
  • Wambua, P., J. Ivens, and I. Verpoest. 2003. Natural fibres: Can they replace glass in fibre reinforced plastics? Composites Science and Technology 63(July): 1259–64. https://linkinghub.elsevier.com/retrieve/pii/S0266353803000964.
  • Wongtanakitcharoen, T., and A. E. Naaman. 2007. Unrestrained early age shrinkage of concrete with Polypropylene, PVA, and carbon fibers. Materials and Structures/Materiaux Et Constructions 40 (3):289–300.
  • Yang, J., Y. C. Ching, and C. H. Chuah. 2019. Applications of Lignocellulosic fibers and lignin in bioplastics: A review. Polymers 11 (5):1–26.
  • Zah, R., R. Hischier, A. L. Leão, and I. Braun. 2007. Curauá fibers in the automobile industry - a sustainability assessment. Journal of Cleaner Production 15 (11–12):1032–40. doi:10.1016/j.jclepro.2006.05.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.