132
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Comprehensive characterization sea purslane (Sesuvium portulacastrum) fiber and the effect of surface modifications on physical, mechanical and thermal properties

, &

References

  • Abdelmouleh, M., S. Boufis, M. N. Belgacem, and A. Dufresne. 2007. Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibre loading. Composite Science and Technology 67 (7):1627–39. doi:10.1016/j.compscitech.2006.07.003.
  • Aziz, S. H., and M. P. Ansell. 2004. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites. Composite Science and Technology 64(9):1219–1230. doi:10.1016/j.compscitech.2003.10.001
  • Cyras, V. P., S. Iannace, J. M. Kenny, and A. Vazquez. 2001. Relationship between processing conditions and properties of a biodegradable composites based on PCL/starch and sisal fibers. Polymer Composites 22 (1):104–10. doi:10.1002/pc.10522.
  • Gassan, J., and A. K. Bledzki. 1999. Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibers. Composite Science and Technology 59 (9):1303–09. doi:10.1016/S02663538(98)00169-9.
  • Jena, P. K., J. R. Mohanty, and S. Nayak. 2020. “Effect of surface modification of vetiver fibers on their physical and thermal properties.” Journal of Natural Fibers Advance Online Publication, 1–12. doi:10.1080/15440478.2020.1726249.
  • Jimenez, A., and A. Bismarck. 2007. Wetting behaviour, moisture up-take and electro-kinetic properties of lignocellulosic fibers. Cellulose 14 (2):115–27. doi:10.1007/s10570-006-9092-x.
  • Kabir, M., M. H. Wang, K. T. Lau, and F. Cardon. 2012. Chemical treatments on plant based natural fibre reinforced polymer composites: an overview. Composites: Part B 43 (7):2883–92. doi:10.1016/j.compositesb.2012.04.053.
  • Khalil, H. P. S. A., and H. D. Rozman. 2000. Rice-husk polyester composites: the effect of chemical modification of rice husk on the mechanical and dimensional stability properties. Polymer-Plastics Technology and Engineering 39:757–81.
  • Liu, M., D. Fernando, G. Daniel, B. Madsen, A. S. Meyer, M. T. Ale, and A. Thygesen. 2015. Effect of harvest time and field retting duration on the chemical composition, morphology and mechanical properties of hemp fibers. Industrial Crops and Products 69:29–39. doi:10.1016/j.indcrop.2015.02.010.
  • Mohanty, J. R., S. N. Das, H. C. Das, and S. K. Swain. 2013. Effective mechanical properties of polyvinyl alcohol biocomposites with reinforcement of date palm leaf fibers. Polymer Composites 34 (6):959–66. doi:10.1002/pc.22502.
  • Nayak, S., and J. R. Mohanty. 2018. Study of mechanical, thermal, and rheological properties of areca fiber-reinforced polyvinyl alcohol composite. Journal of Natural Fibers 16 (5):688–701. doi:10.1080/15440478.2018.1432000.
  • Nayak, S., S. K. Khuntia, S. D. Mohanty, J. Mohapatra, and T. K. Mall. 2020. “An experimental study of physical, mechanical and morphological properties of alkali treated moringa/areca based natural fiber hybrid composites.” Journal of Natural Fibers Advance Online Publication, 1–12. doi:10.1080/15440478.2020.1758282.
  • Nosbi, N., H. M. Akil, Z. A. M. Ishak, and A. A. Bakar. 2011. Behavior of kenaf fibers after immersion in several water conditions. Bio-Resources 6 (2):950–60.
  • Paul, A., K. Joseph, and S. Thomas. 1997. Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Composites Science and Technology 57 (1):67–79. doi:10.1016/S0266-3538(96)00109-1.
  • Ramesh, P., B. D. Prasad, and K. L. Narayana. 2018. Characterization of kenaf fiber and its composites: a review. Journal of Reinforced Plastic and Its Composites 37 (11):731–37. doi:10.1177/0731684418760206.
  • Ramesha, M., T. S. A. Atreya, U. S. Aswin, H. Eashwar, and C. Deepa. 2014. Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Procedia Engineering 97:563–72. doi:10.1016/j.proeng.2014.12.284.
  • Rong, M. Z., M. Q. Zhang, Y. Lui, G. C. Yang, and H. M. Zeng. 2001. The effect of fibre treatment on the mechanical properties of unidirectional sisal reinforced epoxy composites. Composites Science and Technology 6:1437–47.
  • Roy, D., B. K. Sarkar, A. K. Rana, and N. R. Box. 2001. The mechanical properties of vinylester resin matrix composites reinforced with alkali treated jute fibers. Composites Part A 32 (1):119–27. doi:10.1016/S1359-835X(00)00101-9.
  • Sahoo, S. K., J. R. Mohanty, S. Nayak, and B. Behera. 2019. Chemical treatment on rattan fibers: durability, mechanical, thermal, and morphological properties. Journal of Natural Fibers 1–10. doi:10.1080/15440478.2019.1697995.
  • Segal, L., J. J. Creely, A. E. Martin, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Textile Research Journal 29 (10):786–94. doi:10.1177/004051755902901003.
  • Sgriccia, N., M. C. Hawley, and M. Misra. 2008. Characterization of natural fiber surfaces and natural fiber composites. Composites: Part A 39 (10):1632–37. doi:10.1016/j.compositesa.2008.07.007.
  • Sreekala, M. S., M. G. Kumaran, S. Thomas, and S. Joseph. 2000. Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance. Applied Composite Materials 7 (5/6):295–329. doi:10.1023/A:1026534006291.
  • Srinivasa, C. V., A. Arifulla, N. Goutham, T. Santhosh, H. J. Jaeethendra, R. B. Ravikumar, S. G. Anil, D. G. Santhosh Kumar, and J. Ashish. 2011. Static bending and impact behaviour of areca fibers composites. Materials & Design 32 (4):2469–75. doi:10.1016/j.matdes.2010.11.020.
  • Stocchi, A., B. Luke, A. Vazquez, and C. Bernal. 2007. A Novel fiber treatment applied to woven jute fabric/vinyl ester laminates. Composites Particle A: Applications Sciences Manufacturing 38 (5):1337–1343
  • Tserki, V., C. Panayiotou, and N. E. Zafeiropoulos. 2005. A study of the effect of acetylation and propionylation on the interface of natural fiber biodegradable composites. Advanced Composites Letters 14 (2):65–71. doi:10.1177/096369350501400202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.