326
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Extraction and Characterization of Natural Fiber from Furcraea Foetida Leaves as an Alternative Material for Textile Applications

, ORCID Icon, , & ORCID Icon

References

  • Abraham, E., B. Deepa, L. A. Pothen, J. Cintil, S. Thomas, M. J. John, R. Anandjiwala, and S. S. Narine. 2013. Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydrate Polymers 92 (2):1477–83. doi:10.1016/j.carbpol.2012.10.056.
  • Åkerholm, M., B. Hinterstoisser, and S. Lennart. 2004. Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydrate Research 339 (3):569–78. doi:10.1016/j.carres.2003.11.012.
  • Almeida, J. R. M. D., R. C. M. P. Aquino, and S. N. Monteiro. 2006. Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea Funifera) fibers. Composites. Part A, Applied Science and Manufacturing 37 (9):1473–79. doi:10.1016/j.compositesa.2005.03.035.
  • Bacci, L., L. Sara Di, L. Albanese, G. Mastromei, and B. Perito. 2011. Effect of different extraction methods on fiber quality of nettle (Urtica Dioica L.). Textile Research Journal 81 (8):827–37. doi:10.1177/0040517510391698.
  • Basu, G., A. N. Roy, K. K. Satapathy, J. Sk Md, L. M. Abbas, and R. Chakraborty. 2012. Potentiality for Value-Added technical use of Indian sisal. Industrial Crops and Products 36 (1):33–40. doi:10.1016/j.indcrop.2011.08.001.
  • Belouadah, Z., A. Ati, and M. Rokbi. 2015. Characterization of new natural cellulosic fiber from Lygeum Spartum L. Carbohydrate Polymers 134:429–37. doi:10.1016/j.carbpol.2015.08.024.
  • Bernfeld, P. 1951. Enzymes of starch degradation and synthesis. Advances in Enzymology and Related Areas of Molecular Biology 12:379–428.
  • Das, P. K., D. Nag, S. Debnath, and L. K. Nayak. 2010. “Machinery for extraction and traditional spinning of plant fibres.”
  • Datta, E., S. Rahman, and M. M. Hossain. 2016. Different approaches to modify the properties of jute fiber: A. Cellulose 58:63.
  • De Rosa, I., J. Maria, M. Kenny, D. Puglia, C. Santulli, and F. Sarasini. 2010. Morphological, thermal and mechanical characterization of okra (Abelmoschus Esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology 70 (1):116–22. doi:10.1016/j.compscitech.2009.09.013.
  • El Oudiani, A., Y. Chaabouni, S. Msahli, and F. Sakli. 2009. Physico-Chemical characterisation and tensile mechanical properties of Agave Americana L. Fibres. The Journal of the Textile Institute 100 (5):430–39. doi:10.1080/00405000701863350.
  • Gupta, B. S. 2008. Friction in Textile Materials. Cambridge England: Woodhead Publishing Limited.
  • Hazarika, D., N. Gogoi, S. Jose, R. Das, and G. Basu. 2017. Exploration of future prospects of indian pineapple leaf, an Agro waste for textile application. Journal of Cleaner Production 141:580–86. doi:10.1016/j.jclepro.2016.09.092.
  • Hossain, M. B., and H. Begum. 2017 “Investigation of spinnability of banana fibers through yarn formation along with analysis of yarn properties. American Journal of Engineering Research 6 (1): 322-327.
  • Howell, H. G., K. W. Mieszkis, and D. Tabor. 1959. “Friction in textiles.”
  • Indran, S., and R. Edwin Raj. 2015. Characterization of new natural cellulosic fiber from cissus quadrangularis stem. Carbohydrate Polymers 117:392–99. doi:10.1016/j.carbpol.2014.09.072.
  • Indran, S., R. Edwin Raj, and V. S. Sreenivasan. 2014. Characterization of new natural cellulosic fiber from cissus quadrangularis root. Carbohydrate Polymers 110:423–29. doi:10.1016/j.carbpol.2014.04.051.
  • Ishak, M. R., Z. Leman, S. M. Sapuan, M. Z. A. Rahman, and U. M. K. Anwar. 2013. Chemical composition and FT-IR spectra of sugar palm (Arenga Pinnata) fibers obtained from different heights. Journal of Natural Fibers 10 (2):83–97. doi:10.1080/15440478.2012.733517.
  • Jayaramudu, J., A. Maity, E. R. Sadiku, B. R. Guduri, A. Varada Rajulu, C. V. V. Ramana, and R. Li. 2011. Structure and properties of new natural cellulose fabrics from cordia dichotoma. Carbohydrate Polymers 86 (4):1623–29. doi:10.1016/j.carbpol.2011.06.071.
  • Jose, S., L. Mishra, G. Basu, and A. K. Samanta. 2016. Study on reuse of coconut fiber chemical retting bath. Part 1: Retting efficiency. Journal of Natural Fibers 13 (5):603–09. doi:10.1080/15440478.2015.1093441.
  • Jose, S., R. Das, I. Mustafa, S. Karmakar, and G. Basu. 2019. Potentiality of Indian pineapple leaf fiber for apparels. Journal of Natural Fibers 16 (4):536–44. doi:10.1080/15440478.2018.1428844.
  • Kalita, B. B., S. Jose, S. Baruah, S. Kalita, and S. R. Saikia. 2019. Hibiscus Sabdariffa (Roselle): A potential source of bast fiber. Journal of Natural Fibers 16 (1):49–57. doi:10.1080/15440478.2017.1401504.
  • Kirby, R. H. 1963. “Vegetable fibres, botany, cultivation and utilization.” In Vegetable fibres. Botany: Cultivation and Utilization. London: Leonard Hill.
  • Manimaran, P., P. Senthamaraikannan, M. R. Sanjay, M. K. Marichelvam, and M. Jawaid. 2018. Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydrate Polymers 181:650–58. doi:10.1016/j.carbpol.2017.11.099.
  • Msahli, S., F. Sakli, and J.-Y. Drean. 2006. Study of textile potential of fibres extracted from Tunisian Agave Americana L. AUTEX Research Journal 6 (1):9–13.
  • Murthy, H. V. S. 2016. Introduction to Textile Fibres. CRC Press.
  • Nair, A. U., B. A. Patwardhan, and R. P. Nachane. 2013. “Studies on friction in cotton textiles: Part II—A study on the relationship between physical properties and frictional characteristics of chemically treated cotton fabrics.”
  • Pandey, R., S. Jose, and M. K. Sinha. 2020. Fiber extraction and characterization from typha domingensis. Journal of Natural Fibers 1–12. doi:10.1080/15440478.2020.1821285.
  • Pinelli, P., F. Ieri, P. Vignolini, L. Bacci, S. Baronti, and A. Romani. 2008. Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica Dioica L. Journal of Agricultural and Food Chemistry 56 (19):9127–32. doi:10.1021/jf801552d.
  • Rao, K. M. M., and K. M. Rao. 2007. Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Composite Structures 77 (3):288–95. doi:10.1016/j.compstruct.2005.07.023.
  • Reddy, K. O., B. Ashok, K. Raja Narender, Y. E. F. Reddy, J. Zhang, and A. V. Rajulu. 2014. Extraction and characterization of novel lignocellulosic fibers from thespesia lampas plant. International Journal of Polymer Analysis and Characterization 19 (1):48–61.
  • Reddy, N., and Y. Yang. 2005. Properties and potential applications of natural cellulose fibers from cornhusks. Green Chemistry 7 (4):190–95. doi:10.1039/b415102j.
  • Reddy, N., and Y. Yang. 2007. Preparation and characterization of long natural cellulose fibers from wheat straw. Journal of Agricultural and Food Chemistry 55 (21):8570–75. doi:10.1021/jf071470g.
  • Sanjay, M. R., P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep. 2018. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production 172:566–81. doi:10.1016/j.jclepro.2017.10.101.
  • Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, and I. Ganesh Moorthy. 2014. Investigation of Physico-Chemical properties of Alkali-Treated prosopis juliflora fibers. International Journal of Polymer Analysis and Characterization 19 (4):309–17. doi:10.1080/1023666X.2014.902527.
  • Saravanan, D., N. Pallavi, R. Balaji, and R. Parthiban. 2008. Investigations into structural aspects of borassus flabellifer L (Palmyrah Palm) fruit fibres. The Journal of the Textile Institute 99 (2):133–40. doi:10.1080/00405000701570914.
  • Segal, L. G. J. M. A., J. J. Creely, A. E. Martin Jr, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Textile Research Journal 29 (10):786–94. doi:10.1177/004051755902901003.
  • Senthamaraikannan, P., S. S. Saravanakumar, V. P. Arthanarieswaran, and P. Sugumaran. 2016. Physico-Chemical properties of new cellulosic fibers from the bark of acacia planifrons. International Journal of Polymer Analysis and Characterization 21 (3):207–13. doi:10.1080/1023666X.2016.1133138.
  • Singh, G., S. Jose, D. Kaur, and B. Soun. 2020. Extraction and characterization of corn leaf fiber. Journal of Natural Fibers 1–11.
  • Sreenivasan, V. S., S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy. 2011. Microstructural, Physico-Chemical and mechanical characterisation of sansevieria cylindrica Fibres–An exploratory investigation. Materials & Design 32 (1):453–61. doi:10.1016/j.matdes.2010.06.004.
  • Subramanian, K., P. Senthil Kumar, P. Jeyapal, and N. Venkatesh. 2005. Characterization of Ligno-Cellulosic seed fibre from wrightia tinctoria plant for textile applications—an exploratory investigation. European Polymer Journal 41 (4):853–61. doi:10.1016/j.eurpolymj.2004.10.037.
  • Yan, Y. 2016. Developments in fibers for technical nonwovens. In Advances in Technical Nonwovens, 19–96. Elsevier.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.