329
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Physical and Mechanical Properties of Rambans (Agave) Fiber Reinforced with Polyester Composite Materials

, , , ORCID Icon, & ORCID Icon

References

  • Abou-Zeid, R. E., N. A. El-Wakil, and Y. Fahmy. 2015. Thermoplastic composites from natural reed fibers. Egyptian Journal of Chemistry 58 (3):287–98.
  • Arib, R. M. N., S. M. Sapuan, M. M. H. M. Ahmad, M. T. Paridah, and H. M. D. K. Zaman. 2006. Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Materials & Design 27 (5):391–96. doi:10.1016/j.matdes.2004.11.009.
  • ASTM International. (2013). G65-16: Standard test method for measuring abrasion using the dry sand/rubber wheel. ASTM Standards, 04 (Reapproved2010), 1–12.
  • ASTM International. 2016. D638-14 standard test method for tensile properties of plastics. ASTM International 82(C):1–15.
  • ASTM International. 2017a. D790-17. Flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM Book of Standards 1-12.
  • ASTM International. 2017b. G99 – 17: Standard test method for wear testing with a pin-on-disk apparatus G99-17. Annual Book of ASTM Standards 05(2016):1–6.
  • ASTM International. (2018). ASTM D256: Standard test methods for determining the Izod pendulum impact resistance of plastics. ASTM Book of Standards, 10 (Reapproved2018), 1–20.
  • Caballero-Caballero, M., F. Chinas-Castillo, J. L. Montes Bernabé, R. Alavéz-Ramirez, and M. E. Silva Rivera. 2018. Effect on compressive and flexural strength of agave fiber reinforced adobes. Journal of Natural Fibers 15 (4):575–85. doi:10.1080/15440478.2017.1349709.
  • Cisneros-López, E. O., A. A. Pérez-Fonseca, F. J. Fuentes-Talavera, J. Anzaldo, R. González-Núñez, D. Rodrigue, and J. R. Robledo-Ortíz. 2016. Rotomolded polyethylene-agave fiber composites: Effect of fiber surface treatment on the mechanical properties. Polymer Engineering & Science 56 (8):856–65. doi:10.1002/pen.24314.
  • Dhal, J. P., and S. C. Mishra. 2013. Processing and properties of natural fiber-reinforced polymer composite. Journal of Materials (2013:1–6. doi:10.1155/2013/297213.
  • Fahim, I. S., S. M. Elhaggar, and H. Elayat. 2012. Experimental investigation of natural fiber reinforced polymers. Materials Sciences and Applications 3 (2):59–66. doi:10.4236/msa.2012.32009.
  • Geethika, V. N., and V. D. P. Rao. 2017. Study of tensile strength of agave Americana fibre reinforced hybrid composites. Materials Today: Proceedings 4 (8):7760–69.
  • Gupta, A., A. Kumar, A. Patnaik, and S. Biswas. 2011. Effect of different parameters on mechanical and erosion wear behavior of bamboo fiber reinforced epoxy composites. International Journal of Polymer Science (2011:1–10. doi:10.1155/2011/592906.
  • Juárez, C., A. Durán, P. Valdez, and G. Fajardo. 2007. Performance of “Agave lecheguilla” natural fiber in portland cement composites exposed to severe environment conditions. Building and Environment 42 (3):1151–57. doi:10.1016/j.buildenv.2005.12.005.
  • Kadla, J. F., S. Kubo, R. A. Venditti, R. D. Gilbert, A. L. Compere, and W. Griffith. 2002. Lignin-based carbon fibers for composite fiber applications. Carbon 40 (15):2913–20. doi:10.1016/S0008-6223(02)00248-8.
  • Karaduman, Y., and L. Onal. 2011. Water absorption behavior of carpet waste jute-reinforced polymer composites. Journal of Composite Materials 45 (15):1559–71. doi:10.1177/0021998310385021.
  • Lee, S., D. Cho, W. Park, S. Lee, S. Han, and L. Drzal. 2005. Novel silk/poly(butylene succinate) biocomposites: The effect of short fibre content on their mechanical and thermal properties. Composites Science and Technology 65 (3–4):647–57. doi:10.1016/j.compscitech.2004.09.023.
  • Li, S., L. Jiang, H. Zhang, Z. Li, and X. Wang. 2009. Recycling of lignin: A new methodology for production of water reducing agent with paper mill sludge. Appita Journal 62 (5):379–82.
  • López-Bañuelos, R. H., F. J. Moscoso, P. Ortega-Gudiño, E. Mendizabal, D. Rodrigue, and R. González-Núñez. 2012. Rotational molding of polyethylene composites based on agave fibers. Polymer Engineering & Science 52 (12):2489–97. doi:10.1002/pen.23168.
  • Mylsamy, K., and I. Rajendran. 2011. The mechanical properties, deformation and thermomechanical properties of alkali treated and untreated Agave continuous fibre reinforced epoxy composites. Materials & Design 32 (5):3076–84. doi:10.1016/j.matdes.2010.12.051.
  • Naveen, J., M. Jawaid, P. Amuthakkannan, and M. Chandrasekar. 2019. Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites. In Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites, 427–40. Woodhead Publishing, Series in Composites Science and Engineering.
  • Nurazzi, M. N., A. Khalina, S. M. Sapuan, and M. Rahmah. 2018. Development of sugar palm yarn/glass fibre reinforced unsaturated polyester hybrid composites. Materials Research Express 5 (4):045308. doi:10.1088/2053-1591/aabc27.
  • Omrani, F., P. Wang, D. Soulat, and M. Ferreira. 2017. Mechanical properties of flax-fibre-reinforced preforms and composites: Influence of the type of yarns on multi-scale characterisations. Composites Part A: Applied Science and Manufacturing 93:72–81. doi:10.1016/j.compositesa.2016.11.013.
  • Panda, P., G. Mishra, S. Mantry, S. K. Singh, and S. P. Sinha. 2014. A study on mechanical, thermal, and electrical properties of glass fiber-reinforced epoxy hybrid composites filled with plasma-synthesized AlN. Journal of Composite Materials 48 (25):3073–82. doi:10.1177/0021998313506242.
  • Prasad, L., A. Kumain, R. V. Patel, A. Yadav, and J. Winczek. 2020a. Physical and mechanical behavior of hemp and nettle fiber-reinforced polyester resin-based hybrid composites. Journal of Natural Fibers 1–16. doi:10.1080/15440478.2020.1821284
  • Prasad, L., S. Kumar, R.V. Patel, A. Yadav, V. A. Kumar, and J. Winczek. 2020. Physical and Mechanical Behaviour of Sugarcane Bagasse Fibre-Reinforced Epoxy Bio-Composites. Materials 13 (23): 5387. doi:10.3390/ma13235387.
  • Prasad, L., G. Singh, A. Yadav, V. Kumar, and A. Kumar. 2019. Properties of functionally gradient composites reinforced with waste natural fillers. Acta Periodica Technologica 50 (50):250–59. doi:10.2298/APT1950250P.
  • Premnath, A. A. 2019. Impact of surface treatment on the mechanical properties of sisal and jute reinforced with epoxy resin natural fiber hybrid composites. Journal of Natural Fibers 16 (5):718–28. doi:10.1080/15440478.2018.1432002.
  • Raju, G. U., and S. Kumarappa. 2011. Experimental study on mechanical properties of groundnut shell particle-reinforced epoxy composites. Journal of Reinforced Plastics and Composites 30 (12):1029–37. doi:10.1177/0731684411410761.
  • Ramakrishnan, T., and P. S. Sampath. 2017. Dry sliding wear characteristics of new short agave angustifolia marginata (AAM) fiber-reinforced polymer matrix composite material. Journal of Biobased Materials and Bioenergy 11 (5):391–99. doi:10.1166/jbmb.2017.1699.
  • Ramanaiah, K., A. V. Ratna Prasad, and K. Hema Chandra Reddy. 2012. Thermal and mechanical properties of waste grass broom fiber-reinforced polyester composites. Materials & Design 40:103–08. doi:10.1016/j.matdes.2012.03.034.
  • Reddy, K. O., C. U. Maheswari, K. R. Reddy, M. Shukla, E. Muzenda, and A. V. Rajulu. 2015. Effect of chemical treatment and fiber loading on mechanical properties of Borassus (Toddy Palm) fiber/epoxy composites. International Journal of Polymer Analysis and Characterization 20 (7):612–26. doi:10.1080/1023666X.2015.1054084.
  • Saba, N., M. T. Paridah, and M. Jawaid. 2015. Mechanical properties of kenaf fibre reinforced polymer composite: A review. Construction and Building Materials 76:87–96. doi:10.1016/j.conbuildmat.2014.11.043.
  • Sair, S., A. Oushabi, A. Kammouni, O. Tanane, Y. Abboud, and A. El Bouari. 2018. Mechanical and thermal conductivity properties of hemp fiber reinforced polyurethane composites. Case Studies in Construction Materials 8:203–12. doi:10.1016/j.cscm.2018.02.001.
  • Shrivastava, R., A. Telang, R. S. Rana, and R. Purohit. 2017. Mechanical properties of Coir/G Lass fiber epoxy resin hybrid composite. Materials Today: Proceedings 4 (2,Part A):3477–83.
  • Singh, C. P. R. V. Patel, M.F. Hasan, A. Yadav V. Kumar, and A. Kumar. 2021. Fabrication and evaluation of physical and mechanical properties of jute and coconut coir reinforced polymer matrix composite. Materials Today: Proceedings 38 (5):2572–77. doi:10.1016/j.matpr.2020.07.684.
  • Singha, A. S., and R. K. Rana. 2013. Preparation and properties of agave fiber-reinforced polystyrene composites. Journal of Thermoplastic Composite Materials 26 (4):513–26. doi:10.1177/0892705711425848.
  • Torres-Tello, E. V., J. R. Robledo-Ortíz, Y. González-García, A. A. Pérez-Fonseca, C. F. Jasso-Gastinel, and E. Mendizábal. 2017. Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrate or poly(hydroxybutyrate-co-hydroxyvalerate). Industrial Crops and Products 99:117–25. doi:10.1016/j.indcrop.2017.01.035.
  • Tronc, E., C. A. Hernández-Escobar, R. Ibarra-Gómez, A. Estrada-Monje, J. Navarrete-Bolaños, and E. A. Zaragoza-Contreras. 2007. Blue agave fiber esterification for the reinforcement of thermoplastic composites. Carbohydrate Polymers 67 (2):245–55. doi:10.1016/j.carbpol.2006.05.027.
  • Vijaya Ramnath, B., S. Junaid Kokan, R. Niranjan Raja, R. Sathyanarayanan, C. Elanchezhian, A. Rajendra Prasad, and V. M. Manickavasagam. 2013. Evaluation of mechanical properties of abaca–jute–glass fibre reinforced epoxy composite. Materials & Design 51:357–66. doi:10.1016/j.matdes.2013.03.102.
  • Yashas Gowda, T. G., M. R. Sanjay, K. Subrahmanya Bhat, P. Madhu, P. Senthamaraikannan, and B. Yogesha. 2018. Polymer matrix-natural fiber composites: An overview. Cogent Engineering 5 (1):1–13. doi:10.1080/23311916.2018.1446667.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.