321
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Characteristics of cellulose fibers from Opuntia ficus indica cladodes and its use as reinforcement for PET based composites

ORCID Icon, , , , , ORCID Icon & show all

References

  • Alamri, H., and I. M. Low. 2012. Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites. Polymer Testing 31 (5):620–28. doi:10.1016/j.polymertesting.2012.04.002.
  • Arrakhiz, F. Z., M. El Achaby, M. Malha, M. O. Bensalah, O. Fassi-fehri, R. Bouhfid, K. Benmoussa, and A. Qaiss. 2013. Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum/low density polyethylene. Materials & Design 43:200–05. doi:10.1016/j.matdes.2012.06.056.
  • Arrakhiz, F.-Z., M. El-Achaby, A.-C. Kakou, S. Vaudreuil, K. Benmoussa, R. Bouhfid, O. Fassi-fehri, and A. Qaiss. 2012. Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: Impact of chemical treatments. Materials & Design 37:379–83. doi:10.1016/j.matdes.2012.01.020.
  • Ashok, B., K. O. Reddy, F. Huatian, and A. V. Rajulu. 2019. Preparation and properties of cellulose/Thespesia lampas microfiber composite films. International Journal of Biological Macromolecules 127:153–58. doi:10.1016/j.ijbiomac.2019.01.041.
  • Bahloul, A., Z. Kassab, M. El Bouchti, H. Hannache, A. Qaiss, M. Oumam, and M. El Achaby. 2020. Micro- and nano-structures of cellulose from eggplant plant (Solanum melongena L) agricultural residue. Carbohydrate Polymers 253:117311. doi:10.1016/j.carbpol.2020.117311.
  • Balaji, A. N., and Nagarajan, K. J. 2017. Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydrate Polymers. doi:10.1016/j.carbpol.2017.06.065.
  • Bardet, M., M. F. Foray, and Q. K. Trân. 2002. High-resolution solid-state CPMAS NMR study of archaeological woods. Analytical Chemistry 74 (17):4386–90. doi:10.1021/ac020145j.
  • Bhattacharya, D., L. T. Germinario, and W. T. Winter. 2008. Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydrate Polymers 73 (3):371–77. doi:10.1016/j.carbpol.2007.12.005.
  • Boussetta, A., A. A. Benhamou, F. J. Barba, M. E. Idrissi, N. Grimi, and A. Moubarik. 2020. Experimental and theoretical investigations of lignin-urea-formaldehyde wood adhesive: Density functional theory analysis. International Journal of Adhesion and Adhesives 104 (September):102737. doi:10.1016/j.ijadhadh.2020.102737.
  • Cheikh, M., S. Abdelmoumen, S. Thomas, H. Attia, and D. Ghorbel. 2018. Use of green chemistry methods in the extraction of dietary fi bers from cactus rackets (Opuntia fi cus indica): Structural and microstructural studies. International Journal of Biological Macromolecules 116:901–10. doi:10.1016/j.ijbiomac.2018.05.090.
  • Deka, B. K., and T. K. Maji. 2011. Study on the properties of nanocomposite based on high density polyethylene, polypropylene, polyvinyl chloride and wood. Composites. Part A, Applied Science and Manufacturing 42 (6):686–93. doi:10.1016/j.compositesa.2011.02.009.
  • El Achaby, M., Z. Kassab, A. Aboulkas, C. Gaillard, and A. Barakat. 2018a. Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. International Journal of Biological Macromolecules 106:681–91. doi:10.1016/j.ijbiomac.2017.08.067.
  • El Achaby, M., Z. Kassab, A. Barakat, and A. Aboulkas. 2018b. Alfa fibers as viable sustainable source for cellulose nanocrystals extraction: Application for improving the tensile properties of biopolymer nanocomposite films. Industrial Crops and Products 112 (December):499–510. doi:10.1016/j.indcrop.2017.12.049.
  • Essabir, H., E. Hilali, A. Elgharad, H. El Minor, A. Imad, A. Elamraoui, and O. Al Gaoudi. 2013. Mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of argan particles. Materials & Design 49:442–48. doi:10.1016/j.matdes.2013.01.025.
  • Essabir, H., M. Raji, S. A. Laaziz, D. Rodrigue, and R. Bouhfid. 2018. Thermo-mechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Composites Part B 149:1–11. doi:10.1016/j.compositesb.2018.05.020.
  • Essabir, H., M. E. L. Achaby, E. I. M. Hilali, R. Bouhfid, and A. Qaiss. 2015. Morphological, structural, thermal and tensile properties of high density polyethylene composites reinforced with treated argan nut shell particles. Journal of Bionic Engineering 12 (1):129–41. doi:10.1016/S1672-6529(14)60107-4.
  • Essabir, H., M. O. Bensalah, D. Rodrigue, R. Bouhfid, and A. Qaiss. 2016b. Mechanics of materials structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles. Mechanics of Materials 93:134–44. doi:10.1016/j.mechmat.2015.10.018.
  • Essabir, H., M. O. Bensalah, D. Rodrigue, R. Bouhfid, and A. E. K. Qaiss. 2016a. Biocomposites based on argan nut shell and a polymer matrix: Effect of filler content and coupling agent. Carbohydrate Polymers 143:70–83. doi:10.1016/j.carbpol.2016.02.002.
  • Garside, P., and P. Wyeth. 2003. Identification of cellulosic fibres by FTIR spectroscopy: Differentiation of flax and hemp by polarized ATR FTIR. Studies in Conservation 51 (3):269–75. doi:10.1179/sic.2006.51.3.205.
  • Greco, A., R. Gennaro, A. Timo, F. Bonfantini, and A. Maffezzoli. 2013. A comparative study between bio-composites obtained with Opuntia ficus indica Cladodes and flax fibers. J. Polym. Environ 21 (4):910–16. doi:10.1007/s10924-013-0595-x.
  • Hourlier, D. 2019. Thermal decomposition of calcium oxalate: Beyond appearances. Journal of Thermal Analysis and Calorimetry 136 (6):2221–29. doi:10.1007/s10973-018-7888-1.
  • ISO 527–3. 2009. Plastics — determination of tensile properties part 5: Test conditions for unidirectional fibre-reinforced plastic composites.
  • Kadimi, A., K. Benhamou, Y. Habibi, Z. Ounaies, and H. Kaddami. 2016. Nanocellulose alignment and electrical properties improvement. Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements. Elsevier Inc 343–76.
  • Karbowiak, T., E. Ferret, F. Debeaufort, A. Voilley, and P. Cayot. 2011. Investigation of water transfer across thin layer biopolymer films by infrared spectroscopy. Journal of Membrane Science 370 (1–2):82–90. doi:10.1016/j.memsci.2010.12.037.
  • Kassab, Z., E. Syafri, Y. Tamraoui, H. Hannache, A. Qaiss, and M. El Achaby. 2019b. Characteristics of sulfated and carboxylated cellulose nanocrystals extracted from Juncus plant stems. International Journal of Biological Macromolecules. doi:10.1016/j.ijbiomac.2019.11.023.
  • Kassab, Z., F. Aziz, H. Hannache, H. Ben Youcef, and M. El Achaby. 2019a. Improved mechanical properties of k-carrageenan-based nanocomposite films reinforced with cellulose nanocrystals. International Journal of Biological Macromolecules 123:1248–56. doi:10.1016/j.ijbiomac.2018.12.030.
  • Kassab, Z., I. Kassem, H. Hannache, R. Bouhfid, A. Qaiss, and M. El Achaby. 2020b. Tomato plant residue as new renewable source for cellulose production: Extraction of cellulose nanocrystals with different surface functionalities. Cellulose 27 (8):4287–303. doi:10.1007/s10570-020-03097-7.
  • Kassab, Z., S. Mansouri, Y. Tamraoui, H. Sehaqui, H. Hannache, A. Qaiss, and M. El Achaby. 2020c. Identifying Juncus plant as viable source for the production of micro- and nano-cellulose fibers: Application for PVA composite materials development. Industrial Crops and Products 144 (July):112035. doi:10.1016/j.indcrop.2019.112035.
  • Kassab, Z., Y. Abdellaoui, M. H. Salim, R. Bouhfid, A. Qaiss, and M. El Achaby. 2020a. Micro- and nano-celluloses derived from hemp stalks and their effect as polymer reinforcing materials. Carbohydrate Polymers 245:116506. doi:10.1016/j.carbpol.2020.116506.
  • Kaushik, A., and M. Singh. 2011. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydrate Research 346 (1):76–85. doi:10.1016/j.carres.2010.10.020.
  • Khalil, S.-A., H. Ismail, H.-D. Rozman, and M.-N. Ahmad. 2001. Effect of acetylation on interfacial shear strength between plant fibres and various matrices. European Polymer Journal 37 (5):1037–45. doi:10.1016/S0014-3057(00)00199-3.
  • Kumar, N., and D. Das. 2017. Fibrous biocomposites from nettle (Girardinia diversifolia) and poly(lactic acid) fibers for automotive dashboard panel application. Composites Part B 130:54–63. doi:10.1016/j.compositesb.2017.07.059.
  • Laaziz, S. A., M. Raji, E. Hilali, H. Essabir, D. Rodrigue, R. Bouhfid, and A. Qaiss. 2017. Bio-composites based on polylactic acid and argan nut shell: Production and properties. International Journal of Biological Macromolecules 104:30–42. doi:10.1016/j.ijbiomac.2017.05.184.
  • Lavoine, N., I. Desloges, A. Dufresne, and J. Bras. 2012. Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers 90 (2):735–64. doi:10.1016/j.carbpol.2012.05.026.
  • Le Troedec, M., D. Sedan, C. Peyratout, and J. Pierre. 2008. Influence of various chemical treatments on the composition and structure of hemp fibres. Composites: Part A 39 (3):514–22. doi:10.1016/j.compositesa.2007.12.001.
  • Liu, C. F., J. L. Ren, F. Xu, J. J. Liu, J. X. Sun, and R-C. Sun 2006. Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse. Journal of Agricultural and Food Chemistry 54 (16):5742–48. doi:10.1021/jf060929o0.
  • Lu, H., Y. Gui, L. Zheng, and X. Liu. 2013. Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Research International Journal 50 (1):121–28. doi:10.1016/j.foodres.2012.10.013.
  • Lu, J., T. Wang, and L. T. Drzal. 2008. Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Composites. Part A, Applied Science and Manufacturing 39 (5):738–46. doi:10.1016/j.compositesa.2008.02.003.
  • Malainine, M. E., A. Dufresne, D. Dupeyre, M. Mahrouz, R. Vuong, and M. R. Vignon. 2003. Structure and morphology of cladodes and spines of Opuntia ficus-indica. Cellulose extraction and characterisation. Carbohydrate Polymers 51 (1):77–83. doi:10.1016/S0144-8617(02)00157-1.
  • Malainine, M. E., M. Mahrouz, and A. Dufresne. 2004. Lignocellulosic flour from Cladodes of Opuntia ficus-indica reinforced Poly (propylene) composites. Macromol. Mater. Eng 289 (289):855–63. doi:10.1002/mame.200400103.
  • Malainine, M. E., M. Mahrouz, and A. Dufresne. 2005. Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell. Composites Science and Technology 65 (10):1520–26. doi:10.1016/j.compscitech.2005.01.003.
  • Mannai, F., H. Elhleli, M. Ammar, R. Passas, E. Elaloui, and Y. Moussaoui. 2018b. Green process for fibrous networks extraction from Opuntia (Cactaceae): Morphological design, thermal and mechanical studies. Industrial Crops and Products 126 (October):347–56. doi:10.1016/j.indcrop.2018.10.033.
  • Mannai, F., M. Ammar, J. G. Yanez, E. Elaloui, and Y. Moussaoui. 2016. Cellulose fiber from Tunisian Barbary Fig “Opuntia ficus-indica” for papermaking. Cellulose 23 (3):2061–72. doi:10.1007/s10570-016-0899-9.
  • Mannai, F., M. Ammar, J. G. Yanez, E. Elaloui, and Y. Moussaoui. 2018a. Alkaline delignification of cactus fibres for pulp and papermaking applications. Journal of Polymers and the Environment 26 (2):798–806. doi:10.1007/s10924-017-0968-7.
  • Moubarik, A., N. Grimi, and N. Boussetta. 2013. Structural and thermal characterization of Moroccan sugar cane bagasse cellulose fibers and their applications as a reinforcing agent in low density polyethylene. Composites Part B: Engineering 52:233–38. doi:10.1016/j.compositesb.2013.04.040.
  • Nassima, E. M., K. Abdelouahdi, A. Barakat, M. Zahouily, A. Fihri, A. Solhy, and M. El Achaby. 2015. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of film. Carbohydrate Polymers. doi:10.1016/j.carbpol.2015.04.051.
  • Oliveira, F. B. D., J. Bras, M. T. B. Pimenta, A. A. D. S. Curvelo, and M. N. Belgacem. 2016. Production of cellulose nanocrystals from sugarcane bagasse fibers and pith. Industrial Crops and Products 93:48–57. doi:10.1016/j.indcrop.2016.04.064.
  • Pan, X., D. Xie, N. Gilkes, D. J. Gregg, and J. N. Saddler. 2005. Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology 124 (1–3):1069–79. doi:10.1385/ABAB:124:1-3:1069.
  • Ramezani Kakroodi, A., S. Panthapulakkal, M. Sain, and A. Asiri. 2015. Cellulose nanofibers from the skin of beavertail cactus, Opuntia basilaris, as reinforcements for polyvinyl alcohol. Journal of Applied Polymer Science 132 (36):1–7. doi:10.1002/app.42499.
  • Reddy, K. O., B. Ashok, K. R. N. Reddy, and Y. E. Feng. 2014a. Extraction and characterization of novel lignocellulosic fibers from thespesia lampas plant. International Journal of Polymer Anal. Charact 19 (1):48–61. doi:10.1080/1023666X.2014.854520.
  • Reddy, K. O., J. Zhang, J. Zhang, and A. V. Rajulu. 2014b. Preparation and properties of self-reinforced cellulose composite films from Agave microfibrils using an ionic liquid. Carbohydrate Polymers 114:537–45. doi:10.1016/j.carbpol.2014.08.054.
  • Rocha, G. J. M., A. R. Gonçalves, B. R. Oliveira, E. G. Olivares, and C. E. V. Rossell. 2012. Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Industrial Crops and Products 35 (1):274–79. doi:10.1016/j.indcrop.2011.07.010.
  • Sannigrahi, P., S. J. Miller, and A. J. Ragauskas. 2010. Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydrate Research 345 (7):965–70. doi:10.1016/j.carres.2010.02.010.
  • Segal, L., L. Creely, A. E. Martin, and M. Conrad. 1958. Empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29 (10):786–94. doi:10.1177/004051755902901003.
  • Senthamaraikannan, P., and M. Kathiresan. 2018. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis L. Carbohydrate Polymers 186:332–43. doi:10.1016/j.carbpol.2018.01.072.
  • Trache, D., A. F. Tarchoun, M. Derradji, and T. S. Hamidon. 2020. Nanocellulose : From fundamentals to advanced applications. Frontiers in Chemistry 8 (May):392. doi:10.3389/fchem.2020.00392.
  • Trache, D., M. H. Hussin, M. Haafiz, and V. K. Thakur. 2017. Recent progress in cellulose nanocrystals: Sources and production. Nanoscale 9 (5):1763–86. doi:10.1039/c6nr09494e.
  • Tserki, V., N. E. Zafeiropoulos, F. Simon, and C. Panayiotou. 2005. A study of the effect of acetylation and propionylation surface treatments on natural fibres. Composites. Part A, Applied Science and Manufacturing 36 (8):1110–18. doi:10.1016/j.compositesa.2005.01.004.
  • Väisänen, T., P. Batello, R. Lappalainen, and L. Tomppo. 2017. Modification of hemp fibers (Cannabis Sativa L.) for composite applications. Industrial Crops and Products 111 (October):422–29. doi:10.1016/j.indcrop.2017.10.049.
  • Youssef, HABIBI.2004. Contribution à l’étude morphologique, ultrastructurale et chimique de la figue de barbarie. Les polysaccharides pariétaux: Charactérisation et modification chimique. PhD dissertation. https://tel.archives-ouvertes.fr/te l–00006273

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.